
C H A P T E R
 18

II. A

dvanced T
cl
TclHttpd Web Server 18

This chapter describes TclHttpd, a web server built entirely in Tcl. The web
server can be used as a stand-alone server or it can be embedded into
applications to web-enable them. TclHttpd provides a Tcl+HTML
template facility that is useful for maintaining site-wide look and feel, and
an application-direct URL that invokes a Tcl procedure anapplication.

This chapter will appear in the 3rd Edition of Practical Programming in Tcl and
Tk, by Brent Welch.

Copyright (c) 1999 Brent Welch, all rights reserved. Please contact
welch@acm.org for more information.
at
y.
re not
, and
modu-
esting

ork for
urce
rcial
p the
ks on

d inte-
o add
 Web
everal

cribe

e to
rpret
TclHttpd started out as about 175 lines of Tcl th
could serve up HTML pages and images. The Tcl socket and I/O commands make this eas
Of course, there are lots of features in web servers like Apache or Netscape that we
present in the first prototype. Steve Uhler took my prototype, refined the HTTP handling
aimed to keep the basic server under 250 lines. I went the other direction, setting up a
lar architecture, adding in features found in other web servers, and adding some inter
ways to connect TclHttpd to Tcl applications.

Today TclHttpd is used both as a general-purpose Web server, and as a framew
building server applications. It implements www.scriptics.com, including the Tcl Reso
Center and Scriptics’ electronic commerce facilities. It is also built into several comme
applications such as license servers and mail spam filters. Instructions for setting u
TclHttpd on your platform are given towards the end of the chapter, on page 230. It wor
Unix, Windows, and Macintosh. You can have the server up and running quickly.

The bulk of this chapter describes the various ways you can extend the server an
grate it into your application. TclHttpd is interesting because, as a Tcl script, it is easy t
to your application. Suddenly your application has an interface that is accessible to
browsers in your company’s intranet or the global Internet. The Web server provides s
ways you can connect it to your application:

• Static pages. As a "normal" web server, you can serve static documents that des
your application.

• Domain handlers. You can arrange for all URL requests in a section of your web sit
be handled by your application. This is a very general interface where you inte
217

218 TclHttpd Web Server Chap. 18

mple,

escrib-

e-
mati-
edure
f the

ular
and

he
an
g on

a fam-
 like

erver
ble to
erver’s
ll be

ple-

-
iffer-

aps

of a
de a
what the URL means and what sort of pages to return to each request. For exa
http://www.scriptics.com/resource is implemented this way. The URL past /

resource selects an index in a simple database, and the server returns a page d
ing the pages under that index.

• Application-Direct URLs. This is a domain handler that maps URLs onto Tcl proc
dures. The form query data that is part of the HTTP GET or POST request is auto
cally mapped onto the parameters of the application-direct procedure. The proc
simply computes the page as its return value. There is none of the complexity o
CGI interface. For example, in TclHttpd the URLs under /status report various sta-
tistics about the web server’s operation.

• Document handlers. You can define a Tcl procedure that handles all files of a partic
type. For example, the server has a handler for CGI scripts, HTML files,
HTML+Tcl template files.

• HTML+Tcl Templates. These are web pages that mix Tcl and HTML markup. T
server replaces the Tcl using the subst command and returns the result. The server c
cache the result in a regular HTML file to avoid the overhead of template processin
future requests. Templates are a great way to maintain common look and feel to
ily of web pages, as well as to implement more advanced dynamic HTML features
self-checking forms.

TclHttpd Architecture

This section describes the software architecture of TclHttpd. This explains how the s
dispatches requests for URLs to different modules and what basic functions are availa
help respond to URL requests. You need to understand this as you go to extend the s
functionality or integrate the server into your own application. As we go along, there wi
references to Tcl files in the server’s implementation. These are all found in the lib directory
of the distribution, and you may find it helpful to read the code to learn more about the im
mentation. [CD-ROM ref] Figure 18–1 shows the basic components of the server.

At the core is the Httpd module , which implements the server side of the HTTP proto-
col. The ’d’ in Httpd stands for daemon, which is the name given to system servers on UNIX.
This module manages network requests, dispatches them to the Url module, and provides
routines used to return the results to requests.

The Url module divides the web site into domains, which are subtrees of the URL hier
archy provided by the server. The idea is that different domains may have completely d
ent implementations. For example, the Document domain (doc.tcl) maps its URLs into
files and directories on your hard disk, while the Application-Direct domain (direct.tcl)
maps URLs into Tcl procedure calls within your application. The CGI domain (cgi.tcl) m
URLs onto other programs that compute web pages.

A Simple URL Domain

You can implement new kinds of domains that provide your own interpretation
URL. This is the most flexible interface available to extend the web server. You provi

TclHttpd Architecture 219
II. A

dvanced T
cl

ierar-
 using

every
s some

s
ith
callback that is invoked to handle every request in a domain, or subtree, of the URL h
chy. The callback interprets the URL, computes the page content, and returns the data
routines from the Httpd module.

Example 18–1 defines a simple domain that always returns the same page to
request. This example shows the basic structure of a domain handler and introduce
useful support procedures. The domain is registered with the Url_PrefixInstall com-
mand. The arguments to Url_PrefixInstall are the URL prefix and a callback that i
called to handle all URLs that match that prefix. In the example, all URLs that start w/

simple are dispatched to the SimpleDomain procedure.

Example 18–1 A simple URL domain.

Url_PrefixInstall /simple [list SimpleDomain /simple]

proc SimpleDomain {prefix sock suffix} {
upvar #0 Httpd$sock data

Generate page header

set html "<title>A simple page</title>\n"
append html "<h1>$prefix$suffix</h1>\n"
append html "<h1>Date and Time</h1>\n"
append html [clock format [clock seconds]]
Display query data

if {[info exist data(query)]} {
append html "<h1>Query Data</h1>\n"
append html "<table>\n"
foreach {name value} [Url_DecodeQuery $data(query)] {

append html "<tr><td>$name</td><td>$value</td></
tr>\n"

Httpd

Url

Application
CGI

File

Your Application

Other
ApplicationsSystem

Document
Templates Direct

Figure 18–1 The dotted box represents one application that embeds TclHttpd. Document templates
and Application Direct URLs provide direct connections from an HTTP request to your application.

TclHttpd

220 TclHttpd Web Server Chap. 18

he

x.
reate

 This
-

 that
 the
:

g the

mote
s. It
}
append html "</table>\n"

}
Httpd_ReturnData $sock text/html $html

}

The SimpleDomain handler illustrates several properties of domain handlers. T
sock and suffix arguments to SimpleDomain are appended by Url_Dispatch when it
invokes the domain handler. The suffix parameter is the part of the URL after the prefi
The prefix is passed in as part of the callback definition so the domain handler can rec
the complete URL. For example, if the server receives a request for the url /simple/page ,
then the prefix is /simple , the suffix is /request .

Connection State and Query Data

The sock parameter is a handle on the socket connection to the remote client.
variable is also used to name a state variable that the Httpd module maintains about the con
nection. The name of the state array is Httpd$sock , and SimpleDomain uses upvar to get
a more convenient name for this array (i.e., data):

upvar #0 Httpd$sock data

An important element of the state array is the query data. This is the information
comes from HTML forms. The query data arrives in an encoded format, and
Url_DecodeQuery procedure is used to decode the data into a list of names and values

foreach {name value} [Url_DecodeQuery $data(query)] {
Process query data

}

[TODO - Clean up TclHttpd so there is a cleaner interface to the query data]

Returning Results

Finally, once the page has been computed, the Httpd_ReturnData procedure is used
to return the page to the client. This takes care of the HTTP protocol as well as returnin
data. There are two related procedures, Httpd_ReturnFile and Httpd_Redirect . The
first returns the contents of a file as the result of the transaction. It is called like this:

Httpd_ReturnFile $sock mimetype filename

The Httpd_Redirect procedure generates a 302 return code that causes the re
client to fetch a different URL. This is a very useful trick employed in complex page flow
is invoked like this:

Httpd_Redirect newurl $sock

If you need to return an error in response to a request, use Httpd_Error . Its code

parameter is a standard numeric code (e.g., 404 for Not Found)

Httpd_Error $sock code

Application Direct URLs 221
II. A

dvanced T
cl

 web
urning
s are
 is the

ec-

and
ro-

-

Application Direct URLs

The Application Direct domain implementation provides the simplest way to extend the
server. It hides the details associated with query data, decoding URL paths, and ret
results. All you do is define Tcl procedures that corresond to URLs. Their argument
automatically matched up to the query data. The Tcl procedures compute a string that
result data, which is usually HTML. That’s all there is to it.

[TODO - Use the implementation of the direct interface to highlights Tcl’s introsp
tion capabilities in the appropriate chapter.]

The Direct_Url procedure defines a URL prefix and a corresponding Tcl comm
prefix. Any URL that begins with the URL prefix will be handled by a corresponding Tcl p
cedure that starts with the Tcl command prefix. This is shown in Example 18–2:

Example 18–2 Application Direct URLs

Direct_Url /demo Demo

proc Demo {} {
return "<html><head><title>Demo page</title></head>\n\

<body><h1>Demo page</h1>\n\
What time is it?\n\
<form action=/demo/echo>\n\
Data: <input type=text name=data>\n\

\n\
<input type=submit name=echo value=’Echo Data’>\n\
</form>\n\
</body></html>"

}
proc Demo/time {{format "%H:%M:%S"}} {

return [clock format [clock seconds] -format $format]
}
proc Demo/echo {args} {

Compute a page that echos the query data

set html "<head><title>Echo</title></head>\n"
append html "<body><table>\n"
foreach {name value} $args {

append html "<tr><td>$name</td><td>$value</td></
tr>\n"

}
append html "</tr></table>\n"
return $html

}

Example 18–2 defines /demo as an Application Direct URL domain that is imple
mented by procedures that begin with Demo. There are just three URLs defined:

/demo
/demo/time
/demo/echo

222 TclHttpd Web Server Chap. 18

ne

have
ace,

lay the
r, you

’s
rma-

roce-

amed
-
e dec-
his:

data.
 data
, you

omain

m the
The /demo page displays a hypertext link to the /demo/time page, and a simple form
that will be handled by the /demo/echo page. This page is static, and so there is just o
return command in the procedure body. Each line of the string ends with:

\n\

This is just a formatting trick to let me indent each line in the procedure, but not
the line indented in the resulting string. Actually, the \-newline will be replaced by one sp
so each line will be indented one space. You can leave those off and the page will disp
same in the browser, but when you view the page source you’ll see the indenting. O
could not indent the lines in the string, but then your code looks a little funny.

The /demo/time procedure just returns the result of clock format . It doesn’t even
bother adding <html> , <head> , or <body> tags, which you can get away with in today
browsers. A simple result like this is also useful if you are using programs to fetch info
tion via HTTP requests.

Using Query Data

The /demo/time procedure is defined with an optional format argument. If a for-

mat value is present in the query data then it overrides the default value given in the p
dure definition.

[TODO - try a hard-wired format and figure out the % encoding problem]
The /demo/echo procedure creates a table that shows its query data. Its args parameter

gets filled in with a name-value list of all query data. You can have named parameters, n
parameters with default values, and the args parameter in your application-direct URL pro
cedures. The server automatically matches up incoming form values with the procedur
laration. For example, suppose you have an application direct procedure declared like t

proc Demo/param { a b {c cdef} args} { body }

You could create an HTML form that had elements named a, b, and c , and specified /
demo/param for the ACTION parameter of the FORM tag. Or, you could type the following into
your browser to embed the query data right into the URL:

/demo/param?a=5&b=7&c=red&d=%7ewelch&e=two+words

In this case, when your procedure is called, a is 5, b is 7, c is red , and the args param-
eter becomes a list of:

d ~welch e {two words}

The %7e and the + are special codes for non-alphanumeric characters in the query
Normally this encoding is taken care of automatically by the Web browser when it gets
from a form and passes it to the Web server. However, if you type query data directly
need to think about the encoding. Example 11–3 on page 126 show the Url_Decode proce-
dure that decodes these values. This procedure is used by the application direct d
implementation, so your procedure argument values are already decoded.

If parameters are missing from the query data they either get the default values fro
procedure definition, or the empty string. Consider this example:

/demo/param?b=5

In this case a is "" , b is 5, c is cdef , and args is an empty list.

Document Types 223
II. A

dvanced T
cl

. (Yes,

zed by
 to your
n

his

For

ys to
o step

the

dure
ing

+Tcl

 that
Returning Other Content Types

The default content type for application direct URLs is text/html . You can specify
other content types by using a global variable with the same name as your procedure
this is a crude way to craft an interface.) Example 18–3 shows part of the faces.tcl file
that implements an interface to a database of picons, or personal icons, that is organi
user and domain names. The idea is that the database contains images corresponding
email correspondents. The Faces_ByEmail procedure, which is not shown, looks up a
appropriate image file. The application direct procedure is Faces/byemail , and it sets the
global variable Faces/byemail to the correct value based on the filename extension. T
value is used for the Content-Type header in the result part of the HTTP protocol.

Example 18–3 Alternate types for Appliction Direct URLs.

Direct_Url /faces Faces
proc Faces/byemail {email} {

global Faces/byemail
filename [Faces_ByEmail $email]
set Faces/byemail [Mtype $filename]
set in [open $filename]
fconfigure $in -translation binary
set X [read $in]
close $in
return $X

}

The Mtype module that maintains a map from file suffixes to MIME content types.
example, it maps .gif to image/gif .

Document Types

The Document domain maps URLs onto files and directories. It provides more wa
extend the server by registering different document type handlers. This occurs in a tw
process. First the type of a file is determined by its suffix. The mime.types file contains a
map from suffixes to MIME types such as text/html or image/gif . This map is controlled
by the Mtype module in mtype.tcl . Second, the server checks for a Tcl procedure with
appropriate name:

Doc_mimetype

The matching prcedure, if any, is called to handle the URL request. The proce
should use routines in the Httpd module to return data for the request. If there is no match
Doc_mimetype procedure, then the default document handler uses Httpd_ReturnFile and
specifies the Content Type based on the file extension.

You can make up new types to support your application. For example, the HTML
templates use the ".tml " suffix that is mapped to the application/x-tcl-template

type. The TclHttpd distribution also includes support for files with a .snmp extension
implement a template-based web interface to the Scotty SNMP Tcl extension.

224 TclHttpd Web Server Chap. 18

le ref-
e
r

h
e

t in the

ested.
he

ro-

et by

s
tain-
 vari-
ime of

 The
rec-

fined
 dis-
them

i-
code

mon
finition
ite:
HTML + Tcl Templates

The template system uses HTML pages that embed Tcl commands and Tcl variab
erences. The server replaces these using the subst command and returns the results. Th
server comes with a general template system, but using subst is so easy you can create you
own template system. The general template framework has these components:

• Each .html file has a corresponding .tml template file. This feature is enabled wit
the Doc_CheckTemplates command in the server’s configuration file. Normally, th
server returns the .html file unless the corresponding .tml file has been modified
more recently. In this case the server processes the template, caches the resul
.html file, and returns the result.

• A dynamic template (e.g., a form handler) must be processed each time it is requ
If you put the Doc_Dynamic command into your page it turns off the caching of t
result in the .html page. The server responds to a request for a .html page by pro-
cessing the .tml page.

• The server creates a page global Tcl variable that has context about the page being p
cessed. Table X lists the elements of the page array.

• The server initializes the env global Tcl variable with similar information, but in the
standard way for CGI scripts. Table Y lists the elements of the env array that are s
Cgi_SetEnv in cgi.tcl .

• The server supports per-directory ".tml " files that contain Tcl source code. These file
are sourced by the server from the URL document root down to the directory con
ing a template file. These files are designed to contain procedure definitions and
able settings that are shared among pages. The server compares the modify t
these files against the template file and will process the template if these .tml files are
newer than the cached .html file. So, by modifying the ".tml " file in the root of your
URL hierarchy you invalidate all the cached .html files.

• The server supports a script library for the procedures called from templates.
Doc_TemplateLibrary procedure registers this directory. The server adds the di
tory to its auto_path , which assumes you have a tclIndex or pkgIndex.tcl file in
the directory so the procedures are loaded when needed.
The advantage of putting procedure definitions in the library is that they are de

one time but executed many times. This works well with the Tcl byte-code compiler. The
advantage is that if you modify procedures in these files you have to explicitly source
into the server for these changes to take effect.

The advantage of putting code into .tml files is that changes are picked up immed
ately with no effort on your part. However, that code is only run one time, so the byte-
compiler just adds overhead.

Templates for Site Structure

The next few examples show a simple template system used to maintain a com
look at feel across the pages of a site. Example 18–4 shows a simple one-level site de
that is kept in the root .tml file. This structure lists the title and URL of each page in the s

Document Types 225
II. A

dvanced T
cl

 page

L to
tion of
Example 18–4 A one-level site structure.

set site(pages) {
Home /index.html
"Ordering Computers"/ordering.html
"New Machine Setup" /setup.html
"Adding a New User" /newuser.html
"Network Addresses" /network.html

}

Each page includes two commands, SitePage and SiteFooter that generate HTML
for the navigational part of the page. Between these commands is regular HTML for the
content. Example 18–5 shows a sample template file:

Example 18–5 A HTML + Tcl template file.

[SitePage "New Machine Setup"]
This page describes the steps to take when setting up a new
computer in our environment. See
Ordering Computers
for instructions on ordering machines.

Unpack and setup the machine.
Use the Network control panel to set the IP address
and hostname.
<!-- Several steps omitted -->
Reboot for the last time.

[SiteFooter]

The SitePage procedure takes the page title as an argument. It generates HTM
implement a standard navigational structure. Example 18–6 has a simple implementa
SitePage :

Example 18–6 SitePage template procedure.

proc SitePage {title} {
global site
set html "<html><head><title>$title</title></head>\n"
append html "<body bgcolor=white text=black>\n"
append html "<h1>$title</h1>\n"
set sep ""
foreach {label url} $site(pages) {

append html $sep
if {[string compare $label $title] == 0} {

append html "$label"
} else {

append html "$label"
}
set sep " | "

}

226 TclHttpd Web Server Chap. 18

l in

a right

three-
family
return $html
}

The foreach loop that computes the simple menu of links turns out to be usefu
many places. Example 18–7 splits out the loop and uses it in the SitePage and SiteFooter

procedures. This version of the templates creates a left column for the navigation and
column for the page content:

Example 18–7 SiteMenu and SiteFooter template procedures.

proc SitePage {title} {
global site
set html "<html><head><title>$title</title></head>\n\

<body bgcolor=$site(bg) text=$site(fg)>\n\
<!-- Two Column Layout -->\n\
<table cellpadding=0>\n\
<tr><td>\n\
<!-- Left Column -->\n\
\n\
\n\
[SiteMenu
 $site(pages)]\n\
\n\
</td><td>\n\
<!-- Right Column -->\n\
<h1>$title</h1>\n\
<p>\n"

return $html
}
proc SiteFooter {} {

global site
set html "<p><hr>\n\

[SiteMenu | $site(pages)]\n\
</td></tr></table>\n"

return $html
}
proc SiteMenu {sep list} {

global page
set s ""
set html ""
foreach {label url} $list {

if {[string compare $page(url) $url] == 0} {
append html slabel

} else {
append html "slabel"

}
set s $sep

}
return $html

}

Of course, a real site will have more elaborate graphics and probably a two-level,
level, or more complex tree structure that describes its structure.You can also define a

Form Handlers 227
II. A

dvanced T
cl

g tem-
around

ing

ith

he cli-
its the
ction

t gets a
es and

f pro-
 safely.
. The

andard

built
l pro-

n state
ort of

ffort.
of templates so that each page doesn’t have to fit the same mold. Once you start usin
plates, it is fairly easy to both change the template implementation and to move pages
among different sections of your web site.

There are many other applications for "macros" that make repetitive HTML cod
chores easy. Take, for example, the link to /ordering.html in Example 18–5. The proper
label for this is already defined in $site(pages) , so we could introduce a SiteLink proce-
dure that uses this:

Example 18–8 The SiteLink procedure.

proc SiteLink {label} {
global site
array set map $site(pages)
if {[info exist map($label)]} {

return "$label"
} else {

return $label
}

}

If your pages embed calls to SiteLink , then you can change the URL associated w
the page name by changing the value of site(pages) . If this is stored in the top-level .tml

file, the templates will automatically track the changes.

Form Handlers

Forms and form handling programs go together. The form is presented to the user on t
ent machine. The form handler runs on the server after the user fills out the form and h
submit button. The form presents input widgets like radiobuttons, checkbuttons, sele
lists, and text entry fields. Each of these widgets is assigned a name, and each widge
value based on the users input. The form handler is a program that looks at the nam
values from the form and computes the next page for the user to read.

CGI is a standard way to hook external programs to web servers for the purpose o
cessing form data. CGI has a special encoding for values so they can be transported
The encoded data is either read from standard input or taken from the command line
CGI program decodes the data, processes it, and writes a new HTML page on its st
output. Chapter 3 (page 29) describes writing CGI scripts in Tcl.

TclHttpd provides alternatives to CGI that are more efficient because they are
right into the server. This eliminates the overhead that comes from running an externa
gram to compute the page. Another advantage is that the Web server can maintai
between client requests simply in Tcl variables. If you use CGI, you must use some s
database or file storage to maintain information between requests.

Application Direct Handlers

The server comes with several built-in forms handlers that you can use with little e

228 TclHttpd Web Server Chap. 18

rm
adable
ers are

y to

 you

 Tcl
for the

y data
n an
The /mail/forminfo URL will package up the query data and mail it to you. You use fo
fields to set various mail headers, and the rest of the data is packaged up into a Tcl-re
mail message. Example 18–9 shows a form that uses this handler. Other built in handl
described starting at page 236

Example 18–9 Mail form results with /mail/forminfo.

<form action=/mail/forminfo method=post>
<input type=hidden name=sendto value=mailreader@my.com>
<input type=hidden name=subject value="Name and Address">
<table>

<tr><td>Name</td><td><input name=name></td></tr>
<tr><td>Address</td><td><input name=addr1></td></tr>
<tr><td> </td><td><input name=addr2></td></tr>
<tr><td>City</td><td><input name=city></td></tr>
<tr><td>State</td><td><input name=state></td></tr>
<tr><td>Zip/Postal</td><td><input name=zip></td></tr>
<tr><td>Country</td><td><input name=country></td></

tr>
</table>

</form>

The mail message sent by /mail/forminfo is shown in Example 18–10. It is eas
write a script that strips the headers, defines a data procedure, and uses eval to process the
message body. Whenever you send data via email, if you format it with Tcl list structure
can process it quite easily.

Example 18–10 Mail message sent by /mail/forminfo

To: mailreader@my.com
Subject: Name and Address

data {
name {Joe Visitor}
addr1 {Acme Company}
addr2 {100 Main Street}
city {Mountain View}
state California
zip 12345
country USA

}

Template Form Handlers

The drawback of using the built-in form handlers is that you have to modify their
implementation to change the resulting page. Another approach is to use templates
result page that embed a command that handles the form data. The Mail_FormInfo proce-
dure, for example, mails form data. It takes no arguments. Instead, it looks in the quer
for sendto and subject values, and if they are present it sends the rest of the data i

Form Handlers 229
II. A

dvanced T
cl

ching
urn off
he

sts the

m
ose in
lf-

t the
lf
email. It returns an HTML comment that flags that mail was sent.
When you use templates to process form data you need to turn off result ca

because the server must process the template each time the form is submitted. To t
caching, embed the Doc_Dynamic command in your form handler pages, or set t
page(dynamic) variable to 1.

Example 18–11 shows a name and address form. This form is on a page that po
form data to itself. Once all the data has been filled in correctly, the Form_Check procedure
in Example 18–12 redirects to the next page in the flow.

Example 18–11 A self-checking form.

<form action=$page(url) method=post>
<input type=hidden name=form value=NameAddr>
[Form_Check nextpage.html mark {email first last addr1 city
zip}]
<table>
[foreach {label name} {

"Email" email
"First Name" first
"Last Name" last
"Address 1" addr1
"Address 2" addr2
"City" city
"State" state
"Zip/Post" zip
"Country" country

} {
if {[info exist mark($name)]} {

append _ "<tr><td>$mark($name) $label</td>\n"
} else {

append _ "<tr><td>$label</td>\n"
}
append _ "<td><input [form::value $name]</td></tr>\n"

}
set _]
</table>
<input type=submit>
</form>

This page embeds a foreach loop to make generation of the HTML table for the for
easier. The loop appends to the _ variable, which is used by convention for this purp
web pages. The form::value procedure, which comes with TclHttpd, is designed for se
posting forms. It returns:

name=" name" value=" value "

The value is the value of the form element based on incoming query data, or jus
empty string if the query value for name is undefined. This way the form can post to itse
and retain values from the previous version of the page.

230 TclHttpd Web Server Chap. 18

irect
-
 flag
 such

mple
that

re that
ates
fferent
Example 18–12 The Form_Check form handler.

proc Form_Check {nextpage markVar required} {
global page
upvar $markVar mark
if {[info exist page(query)]} {

array set query $page(query)
if {[info exist mark]} {

unset mark
}
foreach field $required {

if {![info exist query($field)] ||
[string length $query($field)] == 0} {

set mark($field) *
}

}
if {![info exist mark]} {

No missing fields, so advance to the next page.
In practice, you must save the existing fields
before redirecting to the next page.

Doc_Redirect $nextpage
}

}
return ""

}

The Doc_Redirect procedure raises a special error that causes TclHttpd to red
the client browser to a different page. Otherwise, the Form_Check procedure defines an ele
ment of the mark array for each missing field. The code in Example 18–11 uses this to
missing fields. In practice, your form handler should do something with the good data,
as put it into a database.

As a matter of style, there is a bit too much code inside the HTML page in Exa
18–11. You could consider combining the logic that displays the form with the logic
checks for required fields. In this case the HTML page has a single call to your procedu
implements "both sides" of the form: the HTML input form and the Tcl code that valid
the field and saves the results.This approach is useful if you re-use the same form on di
pages.

The TclHttpd Distribution

Get the TclHttpd distribution from the CD-ROM, or find it on the Internet at:
ftp://ftp.scriptics.com/pub/tcl/httpd/

http://www.beedub.com/tclhttpd/

Quick Start

Unpack the tar file or the zip file and you can run the server from the httpd.tcl script

The TclHttpd Distribution 231
II. A

dvanced T
cl

uses

-

te a
ge

. Use

.

to

e the

nts of

ere is

cil-

recom-
in the bin directory. On UNIX:
tclsh httpd.tcl -port 80

This command will start the web server on the standard port (80). By default it
port 8015 instead. If you run it with the -help flag it will tell you what command line
options are available. If you use wish instead of tclsh then a simple Tk user interface is dis
played that shows how many hits the server is getting.

On Windows you can double-click the httpd.tcl script to start the server. It will use
wish and display the user interface. Again it will start on port 8015. You will need to crea
shortcut that passes the -port argument, or edit the associated configuration file to chan
this. Configuring the server is described later.

Once you have the server running you can connect to it from your web browser
this URL if you are running on the default (non-standard) port:

http:// hostname :8015/

If you are running without an internet connection, you may need to specify 127.0.0.1

for the hostname. This is the "localhost" address and will bypass the network subsystem
http://127.0.0.1:8015/

Inside the Distribution

The TclHttpd distribution is organized into the following directories:

• bin
This has sample startup scripts and configuration files. The httpd.tcl script runs the
server. The tclhttpd.rc file is the standard configuration file. The minihttpd.tcl

file is the 250-line version. The torture.tcl file has some scripts that you can use
fetch many URLs at once from a server.

• lib
This has all the Tcl sources. In general, each file provides a package. You will se
package require commands partly in bin/httpd.tcl and partly in bin/tclht-

tpd.rc . The idea is that the only the core packages are required by httpd.tcl , and
different applications can tune what packages are needed by adjusting the conte
tclhttpd.rc .

• htdocs
This is a sample URL tree that demonstrates the features of the web server. Th
also some documentation there. One directory to note is htdocs/libtml , which is the
standard place to put site-specific Tcl scripts used with the Tcl+HTML template fa
ity.

• src
There are a few C source files for a some optional packages. These have been p
piled for some platforms, and you can find the compiled libraries back under lib/

232 TclHttpd Web Server Chap. 18

d line

p is to

c
t of
 final

 your

rver

he
t over-

ese are
Binaries in platform-specific subdirectories.

Server Configuration

TclHttpd configures itself with three main steps. The first step is to process the comman
arguments described in Table 1–1. The arguments are copied into the Config Tcl array. Any-
thing not specified on the command line gets a default value. The next configuration ste
source the configuration file. The default configuration file is named tclhttpd.rc in the
same directory as the startup script (i.e., bin/tclhttpd.rc). This file can override com-
mand line arguments by setting the Config array itself. This file also has application-specifi
package require commands and other Tcl commands to initialize the application. Mos
the Tcl commands used during initialization are described in the rest of this section. The
step is to actually start up the server. This done back in the main httpd.tcl script.

For example, to start the server for the document tree under /usr/local/htdocs and
own email address as webmaster, you can execute this command to start the server:

tclsh httpd.tcl -docRoot /usr/local/htdocs -webmaster
welch

Alternatively, you can put these settings into a configuration file, and start the se
with that configuration file:

tclsh httpd.tcl -config mytclhttpd.rc

In this case the mytclhttpd.rc file could contain these commands to hard-wire t
document root and webmaster email. In this case the command line arguments canno
ride these settings:

set Config(docRoot) /usr/local/htdocs

set Config(webmaster) welch

Command Line Arguments

There are several parameters you may need to set for a standard web server. Th
shown below in Table 1–1. The command line values are mapped into the Config array by
the httpd.tcl startup script.

Table 1–1 Basic TclHttpd Parameters

Parameter Command Option Config Variable

Port number. The default is
8015 .

-port number Config(port)

Server name. The default is
[info hostname] .

-name name Config(name)

IP address. The default is 0,
for "any address" .

-ipaddr address Config(ipaddr)

Server Configuration 233
II. A

dvanced T
cl

. The

ts the

es (or
sten to
ts from

0, and
e the

rwise

r ID
Server Name and Port

The name and port parameters define how your server is known to Web browsers
URLs that access your server begin with

http:// name: port /

If the port number is 80 you can leave out the port specification. The call that star
server using these parameters is found in httpd.tcl as:

Httpd_Server $Config(name) $Config(port) $Config(ipaddr)

Specifying the IP address is only necessary if you have several network interfac
several IP addresses assigned to one network interface) and want the server to li
requests on a particular network address. Otherwise, by default server accepts reques
any network interface.

User and Group ID

The user and group ID are used on UNIX systems with the setuid and setgid sys-
tem calls. This lets you start the server as root, which is necessary to listen on port 8
then switch to a less privileged user account. If you use Tcl+HTML templates that cach
results in HTML files, then you need to pick an account that can write those files. Othe
you may want to pick a very unprivileged account.

The setuid Tcl command is implemented by a C extension found under the src direc-
tory. If you have not compiled this for your platform, then the attempt to change use
gracefully fails. See the README file in the src directory for instructions on compiling and
installing the extensions found there.

Directory of the root of the
URL tree. The default is the
htdocs directory.

-docRoot directory Config(docRoot)

User ID of the TclHttpd pro-
cess. The default is 50 . (UNIX
only.)

-uid uid Config(uid)

Group ID of the TclHttpd pro-
cess. The default is 100 .
(UNIX only.)

-gid gid Config(gid)

Webmaster email. The default
is webmaster .

-webmaster email Config(webmaster)

Configuration file. The default
is tclhttpd.rc .

-config filename Config(file)

Additional directory to add to
the auto_path .

-library directory Config(library)

Table 1–1 Basic TclHttpd Parameters

Parameter Command Option Config Variable

234 TclHttpd Web Server Chap. 18

 server

vi-

ripts,

-

is

rgu-
ocu-

e:

ory.

 to

L
irec-
 is:

 error it
:

Webmaster Email

The webmaster email address is used for automatic error reporting in the case of
errors. This is defined in the configuration file with the following command:

Doc_Webmaster $Config(webmaster)

If you call Doc_Webmaster with no arguments, it returns the email address you pre
ously defined. This is useful when generating pages that contain mailto: URLs with the
webmaster address.

Document Root

The document root is the directory that contains the static files, templates, cgi sc
and so on that make up your web site. By default the httpd.tcl script uses the htdocs directory
next to the directory containing httpd.tcl. It is worth noting the trick used to locate this direc
tory:

file join [file dirname [info script]] ../htdocs

The info script command returns the full name of the http.tcl script, file dirname

computes its directory, and file join finds the adjacent directory. The path ../htdocs

works with file join on any platform. The default location of the configuration file
found in a similar way:

file join [file dirname [info script]] tclhttpd.rc

The configuration file initializes the document root with this call:
Doc_Root $Config(docRoot)

If you need to find out what the document root is, you can call Doc_Root with no a
ments and it returns the directory of the document root. If you want to add additional d
ment trees into your website you can do that with a call like this in your configuration fil

Doc_AddRoot directory urlprefix

Other Document Settings

The Doc_IndexFile command sets a pattern used to find the index file in a direct
The command used in the default configuration file is

Doc_IndexFile index.{htm,html,tml,subst}

If you invent other file types with different file suffixes, you can alter this pattern
include them. This pattern will be used by the Tcl glob command.

The Doc_PublicHtml command is used to define "home directories" on your HTM
site. If the URL begins with ~username, then the web server will look under the home d
tory of username for a particular directory. The command in the default configuration file

Doc_PublicHtml public_html

For example, if my home directory is /home/welch , then the URL ~welch maps to
the directory /home/welch/public_html . If there is no Doc_PublicHtml command,
then this mapping does not occur.

You can register two special pages that are used when the server encounters an
the user specifies an unknown URL. The default configuration file has these commands

Server Configuration 235
II. A

dvanced T
cl

rder to
 tem-

s an
eep
d in

. The
tions

le is

per-

 file

o be
gura-

u
ts
Doc_ErrorPage error.html

Doc_NotFoundPage notfound.html

These files are treated like templates in that they are passed through subst in o
include the error information or the URL of the missing page. These are pretty crude
plates compared to the templates described earlier. You can only count on the Doc and Httpd

arrays being defined. Look at the Doc_SubstSystemFile in doc.tcl for the truth about
how these files are processed.

Document Templates

The template mechanism has two main configuration options. The first specifie
additional library directory that contains your application-specific scripts. This lets you k
your application-specific files separate from the TclHttpd implementation. The comman
the default configuration file specifies the libtml directory of the document tree:

Doc_TemplateLibrary [file join $Config(docRoot) libtml]

You can also specify an alternate Tcl interpreter in which to process the templates
default is to use the main interpreter, which is named {} according to the conven
described in Chapter 17.

Doc_TemplateInterp {}

Log Files

The server keeps standard format log files. The Log_SetFile command defines the
base name of the log file. The default configuration file uses this command:

Log_SetFile /tmp/log$Config(port)_

By default the server rotates the log file each night at midnight. Each day’s log fi
suffixed with the current date (e.g., /tmp/log port _990218 .) The error log, however, is not
rotated, and all errors are accumulated in /tmp/log port _error.

The log records are normally flushed every few minutes to eliminate an extra I/O o
ation on each HTTP transaction. You can set this period with Log_FlushMinutes . If min-
utes is 0, the log is flushed on every HTTP transaction. The default configuration
contains:

Log_FlushMinutes 1

CGI Directories

You can register a directory that contains CGI programs with the Cgi_Directory

command. This command has the intersting effect of forcing all files in the directory t
executed as CGI scripts, so you cannot put normal HTML files there. The default confi
tion file contains:

Cgi_Directory /cgi-bin

This means the cgi-bin directory under the document root is a CGI directory. If yo
supply another argument to Cgi_Directory , then this is a file system directory that ge
mapped into the URL defined by the first argument.

You can also put CGI scripts into other directories and use the .cgi suffix to indicate

236 TclHttpd Web Server Chap. 18

er are

tting
ils.

ation-
 can

ts not
 top-

-
ed on

u can
-

s.

l
they should be executed as CGI scripts. The various file types supported by the serv
described later.

The cgi.tcl file has some additional parameters that you can only tune by se
some elements of the Cgi Tcl array. See the comments in the beginning of that file for deta

Standard Application-Direct URLs

The server has several modules that provide application-direct URLs. These applic
direct URL lets you control the server or examine its state from any Web browser. You
look at the implementation of these modules as examples for your own application.

Status

The /status URL is implemented in the status.tcl file. The status module imple-
ments the display of hit counts, document hits, and document misses (i.e., documen
found). The Status_Url command enables the application-direct URLs and assigns the
level URL for the status module. The default configuration file contains this command:

Status_Url /status

Assuming this configuration, the following URLs are implemented:

Debugging

The /debug URL is implemented in the debug.tcl file. The debug module has sev
eral useful URLs that let you examine variable values and other internal state. It is turn
with this command in the default configuration file:

Debug_Url /debug

Table 1–3 lists the /debug URLs. These URLs often require parameters that yo
specify directly in the URL. For example, the /debug/echo URL echoes its query parame
ters:

http:// yourserver : port /debug/echo?name=value&name2=val2

Table 1–2 Status application-direct URLs.

/status Main status page showing summary counters and hit count histogram

/status/doc Show hit counts for each page. This page lets you sort by name or hit
count, and limit files by patterns.

/status/hello A trivial URL that returns "hello".

/status/notfound Show miss counts for URLs that users tried to fetch.

/status/size The displays an estimated size of Tcl code and Tcl data used by the
TclHttpd program.

/status/text This is a version of the main status page that doesn’t use the graphica
histograms of hit counts.

Standard Application-Direct URLs 237
II. A

dvanced T
cl

 with
ecause
 gen-
 reset
r has
start-
The sample URL tree that is included in the distribution includes the file htdocs/

hacks.html . This file has several small forms that use the /debug URLS to examine vari-
ables and source files. Example18–13 shows the implementation of /debug/source . You
can see that it limits the files to the main script library and to the script library associated
document templates. It may seem dangerous to have these facilities, but I reason that b
my source directories are under my control it cannot hurt to reload any source files. In
eral the library scripts just contain procedure definitions and no global code that might
state inappropriately. In practice, the ability to tune (i.e., fix bugs) in the running serve
proven useful to me on many occassions. It lets you evolve your application without re
ing it!

Example 18–13 The /debug/source application-direct URL implementation.

proc Debug/source {source} {
global Httpd Doc
set source [file tail $source]
set dirlist $Httpd(library)
if {[info exists Doc(templateLibrary)]} {

lappend dirlist $Doc(templateLibrary)
}
foreach dir $dirlist {

set file [file join $dir $source]
if [file exists $file] {

break
}

}

Table 1–3 Debug application-direct URLs.

/debug/after List the outstanding after events.

/debug/dbg Rendez-vous with TclPro Debugger. This takes a host and
port parameter. You need to install prodebug.tcl from
TclPro into the server’s script library directory.

/debug/echo Echos its query parameters. Accepts a title parameter.

/debug/errorInfo Displays the errorInfo variable along with the servers version
number and webmaster email. Accepts title and errorInfo
arguments.

/debug/parray Displays a global array variable. The name of the variable is
specified with the aname parameter.

/debug/pvalue A more general value display function. The name of the variable
is specified with the aname parameter. This can be a scaler, an
array, or a pattern that matches several variable names.

/debug/raise Raise an error (to test error handling). Any parameters become
the error string.

/debug/source Source a file from either the server’s main library directory or
the Doc_TemplateLibrary directory. The file is specified with
the source parameter.

238 TclHttpd Web Server Chap. 18

ed by

in
you

 the
ation

tion

em
set error [catch {uplevel #0 [list source $file]} result]
set html "<title>Source $source</title>\n"
if {$error} {

global errorInfo
append html "<H1>Error in $source</H1>\n"
append html "<pre>$result<p>$errorInfo</pre>"

} else {
append html "<H1>Reloaded $source</H1>\n"
append html "<pre>$result</pre>"

}
return $html

}

Administration

The /admin URL is implemented in the admin.tcl file. The admin module lets you
load URL redirect tables, and it provides URLs that reset some of the counters maintain
the server. It is turned on with this command in the default configuration file:

Admin_Url /admin

Currently there is only one useful admin URL. The /admin/redirect/reload

URL sources the file named redirect in the document root. This file is expected to conta
a number of Url_Redirect commands that establish URL redirects. These are useful if
change the names of pages and want the old names to still work.

The administration module has a limited set of application-direct URLs because
simple application-direct mechanism doesn’t provide the right hooks to check authentic
credentials. The HTML+Tcl templates work better with the authentication schemes.

Sending Email

The /mail URL is implemented in the mail.tcl file. The mail module implements
various form handlers that email form data. Currently it is UNIX only as it uses /usr/lib/

sendmail to send the mail. It is turned on with this command in the default configura
file:

Mail_Url /mail

The following application-direct URLs are useful form handlers. You can specify th
as the ACTION parameter in your <FORM> tags.

Table 1–4 Application-direct URLS that email form results.

/mail/bugreport This sends email with the errorInfo from a server error. It
takes an email parameter for the destination address and an
errorInfo parameter. Any additional arguments get included
into the message.

Standard Application-Direct URLs 239
II. A

dvanced T
cl

 It
ects to

o
The mail module provides two Tcl procedures that are generally useful. The MailIn-

ner procedure is the one that sends mail. It is called like this:
MailInner sendto subject from type body

The sendto and from arguments are email addresses. The type is the Mime type
(e.g., text/plain or text/html) and appears in a Content-Type header. The body con-
tains the mail message without any headers.

The Mail_FormInfo procedure is designed for use in HTML+Tcl template files.
takes no arguments, but insteads looks in current query data for its parameters. It exp
find the same arguments as the /mail/forminfo direct URL. Using a template with
Mail_FormInfo gives you more control over the result page than posting directly t/

mail/forminfo , and is illustrated in Example 18–9 on page 228.

/mail/forminfo This is designed to send email containing form results. It
requires these parameters: sendto for the destination address,
subject for the mail subject, href and label for a link to dis-
play on the results page. Any additional arguments are formatted
with the Tcl list command for easy processing by programs
that read the mail.

/mail/formdata Thisis an older form of /mail/forminfo that doesn’t format
the data into Tcl lists. It only requires the email and subject
parameters. The rest are formatted into the message body.

Table 1–4 Application-direct URLS that email form results.

240 TclHttpd Web Server Chap. 18

	18
	TclHttpd Web Server
	TclHttpd started out as about 175 lines of Tcl that could serve up HTML pages and images. The Tcl...
	• Static pages. As a "normal" web server, you can serve static documents that describe your appli...
	• Domain handlers. You can arrange for all URL requests in a section of your web site to be handl...
	• Application-Direct URLs. This is a domain handler that maps URLs onto Tcl procedures. The form ...
	• Document handlers. You can define a Tcl procedure that handles all files of a particular type. ...
	TclHttpd Architecture
	Figure 18–1� The dotted box represents one application that embeds TclHttpd. Document templates a...
	A Simple URL Domain
	Example 18–1� A simple URL domain.

	Connection State and Query Data
	Returning Results

	Application Direct URLs
	Example 18–2� Application Direct URLs
	Using Query Data
	Returning Other Content Types
	Example 18–3� Alternate types for Appliction Direct URLs.

	Document Types
	HTML + Tcl Templates
	• Each .html file has a corresponding .tml template file. This feature is enabled with the Doc_Ch...
	• A dynamic template (e.g., a form handler) must be processed each time it is requested. If you p...
	• The server creates a page global Tcl variable that has context about the page being processed. ...
	• The server initializes the env global Tcl variable with similar information, but in the standar...
	• The server supports per-directory ".tml" files that contain Tcl source code. These files are so...
	• The server supports a script library for the procedures called from templates. The Doc_Template...

	Templates for Site Structure
	Example 18–4� A one-level site structure.
	Example 18–5� A HTML + Tcl template file.
	Example 18–6� SitePage template procedure.
	Example 18–7� SiteMenu and SiteFooter template procedures.
	Example 18–8� The SiteLink procedure.

	Form Handlers
	Application Direct Handlers
	Example 18–9� Mail form results with /mail/forminfo.
	Example 18–10� Mail message sent by /mail/forminfo

	Template Form Handlers
	Example 18–11� A self-checking form.
	Example 18–12� The Form_Check form handler.

	The TclHttpd Distribution
	Quick Start
	Inside the Distribution
	• bin This has sample startup scripts and configuration files. The httpd.tcl script runs the serv...
	• lib This has all the Tcl sources. In general, each file provides a package. You will see the pa...
	• htdocs This is a sample URL tree that demonstrates the features of the web server. There is als...
	• src There are a few C source files for a some optional packages. These have been precompiled fo...

	Server Configuration
	Command Line Arguments
	Table 1–1� Basic TclHttpd Parameters

	Server Name and Port
	User and Group ID
	Webmaster Email
	Document Root
	Other Document Settings
	Document Templates
	Log Files
	CGI Directories

	Standard Application-Direct URLs
	Status
	Table 1–2� Status application-direct URLs.

	Debugging
	Table 1–3� Debug application-direct URLs.
	Example 18–13� The /debug/source application-direct URL implementation.

	Administration
	Sending Email
	Table 1–4� Application-direct URLS that email form results.

