
Popeye and Roadrunner
Lessons Learned

Time marches on

• The number of flight events received by FlightAware has
increased 40% this year.

• It’s getting harder to keep Popeye up to date.

• It’s still running faster than real-time, but its lead is shrinking.

• We’re adding a whole new data stream for planes moving
on the surface.

Popeye
• Provides real-time view of the skies for webservers and other

applications at Flightaware.

• Reads a stream of flight events and maintains a database of tracks and
positions.

Surface movement

• Planes move in and out of well defined zones on the
ground.

• Runways, gates, hangers, service areas…

• We can use this to provide information to pilots and
ground operators.

• So we want a service to provide easy access to this data.

Roadrunner
• Provides real-time view of the ground for webservers and

other applications at Flightaware.

Roadrunner
• Surface movement is being presented as a new event

stream

• It’s a much simpler problem than flight events.

• Tracks are short.

• Tracks stay in a single airport.

• Tracks are always well terminated.*

• So Roadrunner solves a simpler problem

* This is a lie, but we make it true.

What this means

• Roadrunner is a good testbed for the next stage of
Popeye.

Lessons from Popeye
• A single stream reader and database is hard: SQLite really

really likes having a single writer and shared readers.

• Can’t do parallel writes to the database.

• Popeye has to do all bookkeeping with a single
connection.

• Purging tracks and positions older than a day.

• Archiving completed tracks to long term database
(PostgreSQL).

Applied to Roadrunner
• Roadrunner’s database is sharded.

• Each event is hashed by airport ID, and written to a shard of the
database.

• Each shard is mounted into the main database when it’s opened.

ATTACH DATABASE rrdb_$shard.sqlite AS shard$shard;

• Each stream reader process only writes to its own shard.

• Separate processes handle cleaning and for archiving.

Overview of roadrunner
• Manager process works like ”init”, monitors running processes,

restarts them as needed.

• For example worker processes exit after 1000 user requests.

• Worker process handles user requests.

• Reader process connects to surfacestream and writes its
assigned database shard.

• Archiver process writes completed tracks to PostgreSQL

• Bookkeeper process cleans old tracks 24 hours after they
complete.

Fowler/Voll/No Hash
• The FNV hash is simple and fast and can be easily

implemented in C++ and Tcl.

• It’s not a cryptographic hash. There are potential attacks that
we don’t care about, because we’re folding it down to a
small integer anyway.

#define FNV_32_PRIME ((uint32_t) 0x01000193)
#define FNV_32_START ((uint32_t) 0x811c9dc5)
uint32_t DB::bucket(std::string_view val, int size)
{
 uint32_t result = FNV_32_START;

 for(auto it = val.cbegin(); it != val.cend(); ++it) {
 result = (result * FNV_32_PRIME) ^ *it;
 }

 return result % size;
}

 https://en.wikipedia.org/wiki/Fowler-Noll-Vo_hash_function

Fowler/Voll/No Hash
• What’s that in TCL?

variable FNV_32_PRIME [expr 0x01000193]
variable FNV_32_START [expr 0x811c9dc5]
proc bucket {val size} {
 variable FNV_32_PRIME
 variable FNV_32_START

 set result $FNV_32_START

 foreach c [split $val ""] {
 scan $c "%c" n
 set result [expr {(($result * $FNV_32_PRIME) & 0xFFFFFFFF) ^ $n}]
 }

 return [expr {$result % $size}]
}

• Could make a C++ Tcl extension but this is only run once per query
when we’re restricting the query to one shard, on the airport ID which
is a 4-character string, so really it’s already overkill.

Cleaner and Archiver
• Querying the database for completed tracks to archive, old archived

tracks tracks to purge, and other lint… can take multiple seconds on
Popeye. So this is handled by separate processes in Roadrunner.

• Cleaner and archiver have to write to the database, but we don’t
want to implement them in the readers. So they bundle up changes
and send them to the appropriate stream reader.

• Stream reader process runs the SQL and sends the result back as a
Tcl list, similar to the Popeye Trackstream interface. This typically
takes tens to hundreds of milliseconds.

• It’s a super simple network database server, just good enough to
avoid blocking or delaying the stream readers.

Trackstream
• Popeye provides a simple query language

• Queries are Tcl lists:

 search -inAir both -originOrDestination KTPA

• Responses are Tcl lists:

{ident SWA104 prefix {} type B737 suffix {} origin KDCA destination KTPA
departureTime 1539351420 faFlightID SWA104-1539149199-airline-0115 blocked 0
timeout ok timestamp 1539351989 firstPositionTime 1539351463 lowLatitude
38.57555 lowLongitude -77.46361 highLatitude 38.98889 highLongitude -77.04103
longitude -77.46361 latitude 38.57555 groundspeed 381 altitude 198 altitudeFeet
19800 altitudeStatus - updateType TZ altitudeChange D heading 206 arrivalTime 0
estimatedArrivalTime 1539358800} {…} …

Surfacestream
• Roadrunner provides a similar interface

• Queries are usually Tcl lists:

 info KLAX-1572888620-asdex-3366  
 track KLAX-1572888620-asdex-3366

• Will also allow SQL select commands:

 select lat,lon from target where airport = ‘KCLT';

• Responses are Tcl lists:

{lon -80.9305 lat 35.22039} {lon -80.93781 lat 35.2141} {lon -80.93192 lat 35.2168}
{lon -80.94842 lat 35.22168} {lon -80.9305 lat 35.22039} {lon -80.94842 lat 35.22168}
{lon -80.94174 lat 35.21776} {lon -80.93779 lat 35.24467} {lon -80.9305 lat 35.22038}
{lon -80.94848 lat 35.22085}

Porting back to popeye
• We are currently working on a new stream reader for

popeye.

• Due to the higher volume of controlstream the readers will
all be spawned from one reader process that reads the
stream and hands it over to database writers.

• Because of the convenience of adding a BOOST
webserver in C++, the cleaner and archiver will talk to the
writers using a REST like interface with JSON responses
instead of a TCP servers that reads and writes Tcl lists.

Reading the database

• Changing the schema means changes in the reader-side
code.

• First approach was a view that emulated the old schema.

 CREATE TEMPORARY VIEW inflight (fp, …) AS
 SELECT fp, … FROM shard0.inflight
 UNION ALL
 SELECT fp, … FROM shard1.inflight
 …;

• This was significantly slower, by a factor of 3-20 times
depending on the query and schema.

Reading the database

• Roadrunner explicitly runs multiple queries on each
request and merges the results in Tcl.

• SQL queries are minimally edited (target -> shardN.target).

• This was actually 10-15% faster than queries against a
single-sharded database.

Performance.

• Writing multiple shards produces basically linear speed
up based on the number of shards.

• Reading multiple shards independently and merging the
results in Tcl produces a moderate speed up.

• We haven’t re-done the query side of Popeye yet but
anticipate similar results.

Unexpected bottleneck
• Text copying is a huge overhead. Even in generating SQL

statements to update the inflight table.

• Controlstream was highly irregular, so we couldn’t use a
small set of prepared statements.

• We built a tree of observed combinations of keys as we
went, and generated and prepared the statement once.

• Ended up with several hundred unique statements after
weeks of running.

The big lesson

• Parallelism with SQLITE is tricky but worthwhile.

