Release the TURTLES

A Pure Tcl Interface to Dynamic Proc Tracing

Michael Yantosca
Flight Aware
michael.yantosca@flightaware.com

October 14, 2019

Abstract

Proper dynamic program analysis requires solid collection of call frequency, relationships,
and timing. Typically, this is achieved with a suite of language-centric tools, e.g., valgrind
(C/C++), the GHC profiling subsystem (Haskell). Tcl appears to lack similar tools or at least
requires significant language extensions to meet this need. Consequently, this work introduces
the Tcl Universal Recursive Trace Log Execution Scrutinizer (TURTLES), a simple proc tracing
interface that yields easily aggregated and analyzed call records. By adhering to pure Tcl, the
endeavor provides an enlightening étude in the pain points of developing such tooling in the
language.

1 Introduction

The TURTLES project began as a small task meant to investigate the relationship between
different procs within the Tcl repositories comprising the FlightAware codebase, particularly for
the Multi-Machine HyperFeed (MMHF) project. The results of the analysis would be leveraged to
inform refactoring efforts to improve the performance of the target program. Inspired by callgrind[4]
and the GHC profiling subsystem[17], the TURTLES project aimed to capture not only the call-
graph relationships but also performance metrics so that users of the library could consolidate
correlated calls into logical modules as well as pinpoint execution hotspots.

Some initial investigation was made into extant facilities within the Tcl base or community
packages that might achieve this purpose. Shannon Noe suggested cmdtrace[6] and disassemble[7]
as potential candidates. After reviewing the documentation, the disassembler appeared to be worth
investigating as a tool for static analysis in future work. To determine the suitability of cmdtrace
for dynamic analysis, some dry runs were executed on toy programs with cmdtrace turned on. The
resulting output was verbose and would require extra parsing to convert into a usable format. The
parsing work was not necessarily prohibitive, but complex programs like MMHF could potentially
generate unmanageable amounts of data, and so it was deemed that a more space-sensitive approach
was required. To this end, constraints were placed on the scope of the TURTLES project to only
examine the immediate caller/callee relationship and provide execution timings inclusive of the
total time spent both in the callee and in the callee’s subcalls.

The TURTLES project also served as an introductory étude in Tcl introspection. As a neophyte
in the language, working on the TURTLES project offered an accelerated course in namespace
management and execution semantics. Pursuing a pure Tcl approach forced careful consideration
of the costs incurred by the profiling overhead and exposed some pitfalls in Tcl that might be
improved in future revisions of the language to make it more accessible and productive for both
novice and experienced developers.

In order to maximize portability, one tacit goal of the TURTLES is to have minimal dependencies
on other packages. The list of required packages is given as follows:

« Tl 8.5[18] or 8.6[19]
o Tclx[8]

o Thread[14]

o cmdline[10]

« platform|[20]

o sqlite3[9]

o teltest[21]

Building the project requires GNU make or a compatible make utility. Code documentation can
be generated by doxygen, but installation does not require it. The project repository README
provides instructions on building and installing the TURTLES project, as well as instructions for
use within a given user-defined program. Some aspects of usage will also be covered in the Design
and Implementation sections of this report.

The remainder of this report is organized in the following manner. The Design section covers
the abstract design decisions and data flow for the TURTLES project. The Implementation sec-
tion expounds on the Design section with specific details about how the design was realized. The
Experiments section exhibits the results of employing the TURTLES project on both toy examples
and on the larger MMHF project. In the Conclusions section, the experimental results and the de-
velopment cycle of the TURTLES project are evaluated along with some aspects of the Tcl learning
curve. Finally, in the Future Work section, some avenues for ongoing research are considered in
light of the aforementioned conclusions with the goal of improving the TURTLES project so as to
encourage adoption and enhance the set of available tools for Tcl development.

2 Design

A few guiding principles informed the design of the TURTLES project, namely minimization of
overhead, correctness of collection, ease of use, and legibility of results. For simplicity, the call
records do not attempt to store information for complete traces through the full call stack but
rather capture the immediate caller-callee relationship.

2.1 Initialization

Starting data collection is achieved by a designated proc which sets up the necessary ephemeral and
final storage for call records per arguments supplied by the user. A trace handler is added to the
proc command on exit to bootstrap the assignment of trace handlers for entry and exit to every
proc defined thereafter.

For best results, it is recommended to make the initialization call as early as possible to cap-
ture the greatest number of proc definitions. Currently, the TURTLES project does not support
retroactively adding proc handlers to procs already defined.

2.2 Collection

The entry and exit handlers capture the times of entry and exit into and out of the covered proc
and record this in the form of a call point record. The caller and callee information in each call
point record is normalized out to a collection of unique proc definition records.

Proc Definition Each proc defined after data collection starts is stored in a proc definition record.
This record is a triple of the proc name, a unique integral identifier, and the time of definition. The
proc name is the unaliased, fully-qualified name of the proc, and the integral identifier is a hash of
this value. The time of definition is canonically represented in UNIX epoch microseconds.

Call Point Each call made is recorded in the form of a call point record. This record is a quintuple
consisting of a caller ID, callee ID, trace ID, time of entry, and time of exit. The caller and callee
IDs correspond to unique integral identifiers in the set of proc definition records. The trace ID is a
unique identifier for distinguishing separate calls with the same caller and callee and is calculated
deterministically. Time of entry and exit are canonically represented in UNIX epoch microseconds.

Persistence Persistence of call records is handled either directly or in a staged fashion depending
on the arguments supplied by the user. In direct mode, the call records are captured and stored
immediately in the final storage. This has the benefit of retaining the most information in case
execution is interrupted but at the cost of speed. In staged mode, the call records are captured and
stored in ephemeral storage while a background task or thread periodically transfers unfinalized
records in bulk to the final persistent storage. The immediate processing cost of each call record is
reduced, but the risk of greater overall loss in cases of interruption is increased.

2.3 Finalization

Ending data collection is achieved by a designated proc which disables all the relevant trace handlers
along with the handler on the proc command. If collection was operating in staged mode, the
ephemeral storage is flushed to the final storage.

2.4 Analysis

For post-hoc analysis, a clustering tool is provided to construct a call graph whose edges are the
immediate caller-callee pairings and nodes are individual procs. The edge weights are defined as
the number of invocations of the callee by the caller.

In anticipation of a highly-connected graph with many nodes, initial attempts to realize the
clustering tool employed the Gallagher-Humblet-Spira (GHS) distributed minimum spanning tree
algorithm[16, pp. 102-106]. Development of a k-machine model[16, pp. 129-133] using Tcl threads
as the individual machines was started but ultimately abandoned due to low development velocity.
In its place, a simple breadth-first flooding approach[16, pp. 55-58] was adopted and found to be
sufficient to the task.

The call records themselves are stored in a format that is searchable and aggregable via standard
SQL statements. This provides the developer with an expressive foundation for data analysis and
visualization which has long enjoyed wide adoption with a minimal learning curve.

3 Implementation

As a pure Tcl implementation, the TURTLES project relies heavily on the introspection facilities
in the language, particularly trace handlers. This section examines some of the implementation
details and provides justification for the decisions made.

3.1 Integration

For most users, installing the library in the Tcl search path and placing the directive package
require turtles inside the target program’s source should suffice to enable usage of the library.
The project README .md contains instructions on installation, as well as commencement and termina-
tion of data collection in the ostensibly common case. The particulars of usage and data collection
are covered in following subsections.

3.2 Parameterization

A set of command-line arguments are used to parameterize the call record collection at runtime.
The command-line parameters themselves are bracketed by the literals +TURTLES and -TURTLES to
distiguish TURTLES parameters from program arguments. The arguments to TURTLES may be
interspersed anywhere in the command line provided that they are appropriately bracketed.

During initialization, ::turtles::options::consume takes the name reference of an argv-
style string and destructively consumes the TURTLES parameters from that variable. Therefore,
it is strongly recommended to place the initialization call to ::turtles::release_the_turtles
as close to the main entry point of the target program as possible, preferably before the program’s
own command-line argument parsing.

Extensive instructions on command-line usage is available in the doxygen code documentation
for turtles.tcl, but the gist of each option is replicated here for the convenience of the reader.

3.2.1 -enabled

The TURTLES library remains dormant unless explicitly enabled. This enables programs to be
instrumented with the TURTLES library without having to require boolean debug flags in the
source. If the flag is not set at the command-line, collection will not happen since the trace
handlers and persistence mechanisms will not be created at all, avoiding even idle overhead.

3.2.2 -commitMode (direct|staged) [-intervalMillis <ms>] [-scheduleMode (ev|mt)]

As mentioned in the Design section, the TURTLES library can persist call records either directly
to final storage or indirectly to ephemeral storage which is persisted to final storage at regular
intervals. For the indirect staged mode, the interval is specified in milliseconds as an argument
to the —intervalMillis command-line switch. For direct mode, the —intervalMillis argument
may be omitted. The default mode is staged, and the default finalization interval is 30000, or 30s.

Persistence is implemented through the use of SQLite databases. Ephemeral storage is an in-
memory database, while final storage is a database file that is attached to the in-memory database
in staged mode and immediately updated in direct mode.

The -scheduleMode option indicates the method of dispath for the periodic finalization in staged
commit mode. Under multithreaded mode, specified by mt, the TURTLES library launches two
separate Tcl threads, i.e., a recorder and a scheduler. The recorder handles all call record storage
updates sequentially according to its thread snippet message queue including finalization operations.
The scheduler periodically sends finalizing snippets to be processed by the recorder according to
the configured interval. Under event-loop mode, specified by ev, the TURTLES library launches
a self-recurring after job into the main Tcl event loop. This mode assumes that the event loop is
entered subsequently after TURTLES initialization.

3.2.3 -dbPath <directory> -dbPrefix <string>

The -dbPath option specifies the directory path for the SQLite database serving as final storage.
The actual database filename is specified by convention informed by the -dbPrefix option. The
full filepath is determined as <dbPath>/<dbPrefix>-<pid>.db where <pid> is the operating sys-
tem process ID of the program. By default, this will yield the filename ./turtles-<pid>.db, i.e.,
turtles-<pid>.db in the current working directory during program execution. The path is canon-
icalized to an absolute path by the helper ::turtles::persistence::base::get_db_filename.

3.2.4 -debug

Including the -debug flag in the TURTLES options turns on verbose logging of call record collection
to stderr. This is useful during development to ensure calls are appropriately recorded but is not
recommended for production runs.

3.3 Initialization

Commencement of record collection is effected through calling : :turtles::release_the_turtles
with the argv-style command-line argument string reference.

3.3.1 Call Record Persistence

Based on the parameters provided by the user, the TURTLES library opens the SQLite databases
that serve as the requisite final and ephemeral call record storage.

3.3.2 Trace Handlers

A bootstrapping trace handler is attached to the execution leave event of the proc command.
This handler has to determine the fully-qualified original name of the defined proc and add a

handler each to the defined proc’s execution enter and execution leave events, so it must be
done post-definition so the two handlers can attach without an error.

Additionally, the Tclx package is loaded and its version of the fork command is instrumented
with handlers on execution enter and execution leave. This permits for some mitigation in
case of process forking, which was a requirement of the MMHF program that engendered this
experiment.

3.4 Collection

3.4.1 Deterministic Identification

Proc ID The original name of each proc was hashed to an integral value using a Rabin-Karp
rolling hash[2]. The mapping outputs in the range [0, Mg], where Mg is the 8th Mersenne prime,
or 231 — 1. Every caller and callee proc defined by the proc command has an entry created in the
proc table of the output DB.

Trace ID Because the enter and leave handlers are defined separately, there needs to be a way
to communicate between the handlers to ensure that the entry and exit of a specific call point are
properly associated. This was the impetus for adding the trace id to the call point record. In the
first implementation, each trace ID was an integer list hash of the following values: the caller ID, the
proc ID, and the proc entry microsecond timestamp. Initially, a stack was used whereby the enter
handler would push onto the stack and the leave handler would pop it off under the assumption of
single-threaded execution.

However, this did not account for yielding and other vagaries of the Tcl event loop, and it was
observed that the trace IDs would not match up frequently in testing with non-trivial programs.
To protect against this, a deterministic scheme was used so that the trace ID was computed as
the integer list hash of the thread ID, stack level, caller 1D, source line, and called ID. This had
the additional benefit of saving the memory required for the stack at the cost of extra compute
time. The stack level and source line were included in consideration of cases where a caller calls the
callee numerous times in its body. The multi-threaded case has not been tested since it requires
an initialization of TURTLES in each thread, and it is expected bugs will surface under those
conditions, especially with respect to contention for the call record final storage.

3.4.2 Enter Handler

The proc enter handler records its own computation start time, computes the requisite hashes
for the call record, records a proc start time, and dispatches a snippet containing the provisional
record to the persistence mechanism. The only information missing is the call point completion
time, which is supplied by the leave handler. The proc enter handler records its computation stop
time and dispatches a record of its own work out-of-band so as to prevent infinite recursion on proc
entry.

3.4.3 Leave Handler

The leave handler first captures the proc computation end time. It then computes the requisite
hashes and dispatches a snippet containing the partial record to the persistence mechanism. Like
the proc enter handler, it keeps its own record of computation time that it sends out-of-band.

3.4.4 Call Record Persistence

Under the multi-threaded scheduling mode, the recorder thread receives snippet messages to ex-
ecute. Call record messages come from the enter and leave handlers associated with the defined
procs whether for the procs under observation or the handlers’ own out-of-band execution metrics.
For the staged case, a scheduler thread periodically sends snippets instructing the recorder to flush
unfinalized call records from ephemeral to final storage.

Under the event-loop scheduling mode, the scheduler is implemented as a self-recurring proc
availing itself of Tcl’s after mechanism. This requires the main program to enter the event loop at
some point in time. Call records are immediately written to ephemeral storage in staged commit
mode and final storage in direct commit mode.

Fork Safety The MMHF program operates by performing some initialization and then forking
multiple children of itself across which the stream processing load is balanced. Most of the procs
to be instrumented are defined prior to the fork. In order to enable the TURTLES library to cross
the fork boundary, the aforementioned enter handler on Tclx: : fork finalizes whatever call records
have been incurred during execution, shuts down the recorder and scheduler threads or event loop
jobs, and closes the fork parent’s final storage.

The trace handlers as occupants of memory remain after the fork, and so the leave handler on
Tclx: :fork determines the fork child’s process ID as well as the parent’s for use in reconstructing
the call record storage. The parent SQLite database is copied to a new child database, and since
both databases are deterministically named by a convention that includes the process ID, conflicts
should be minimized. Both children and parent reload their databases post-fork and restart the
recorder and scheduler workers as applicable.

There is a small window for lacunae in the call record history at the time of fork, but this is
deemed an acceptable loss in light of the benefit that the implicit fork safety provides. Every child
should have roughly the same information as the parent and its siblings pre-fork, subject to spawn
order. This adheres to the copy semantics of forking at least by reasonable approximation if not
exactly.

Note that for long running programs, there is a potential for conflict if the parent process
periodically refreshes the children and the operating system crosses the max PID boundary. In this
case, a child may open a database that previously belonged to another child from the past. This
is not a problem so long as there is a parent-child or sibling relationship between the processes
that share the PID. The uniqueness of the trace ID for each call record is determined by both
time (epoch execution microsecond stamps) and space (thread ID, call stack). This should make
post-hoc merging of all the associated SQLite databases trivial provided that the merge ignores
conflicts, which most likely will arise in most use cases from pre-fork records and the negligible
probability of hash collision. Simultaneous runs of separate programs instrumented by TURTLES
without specifying a unique database filename prefix per program will yield undesirable results.

Thread Safety Because the Tcl threading model defines a separate Tcl interpreter per thread,
capturing call records in a multi-threaded scenario requires initialization at the start of each par-
ticipating thread. This is not presently recommended since the behavior is untested, and as was
previously alluded, it will probably result in contention for the call record database and possibly
deadlock.

The snippet message model used here incurs a substantial amount of overhead and requires that
call record information be fully evaluated to literals since the threads do not share state. Thread
state variables (TSVs) were eschewed to avoid the complexity of locking and state maintenance in
favor of a stateless message-passing scheme.

3.5 Finalization

Finalization of call record storage is a simple process. Since SQLite permits attaching extraneous
databases for information transfer, the finalization is done as a bulk insert query from ephemeral
to final storage. Upon entry into the finalization procedure, the current clock is memoized and all
records with non-null exit timestamps prior to the memoized cutoff are moved into final storage
and deleted from ephemeral storage. The ephemeral storage has no need to maintain completed
call records for update, and so this keeps the ephemeral storage size from growing without bound
and improves the speed of update queries since there are fewer records to search.

When the finalization procedure : :turtles::capture_the_turtles is invoked, the applicable
recorder and scheduler workers are stopped, and a final query moving call records from ephemeral
storage to final storage is executed, including all records regardless of whether they had finished
execution or not by the time the collection was ended.

3.6 Analysis

Considering the original ticket that spawned this project suggested the Highly Connected Subgraphs
(HCS) algorithm[1] for clustering calls by connectivity, it should have been apparent ab initio
that attempting to implement GHS in a k-machine model implemented in Tcl threads was a bit
overkill. Constructing a Tcl thread k-machine model would be an interesting project in its own
right but falls outside the scope of this work. The work-in-progress is left in the repository under
the ::turtles::bale and ::turtles: :kmm namespaces as an interesting if incomplete attempt at
realizing the algorithm. The implementation borrows heavily from work done by the author[22] on
a connected components project using MPI[12, 15] as the underlying framework.

The BFS flooding implementation is implemented in the standalone cluster.tcl program,
which loads the call records from the SQLite database that served as final storage for a given run
into a weighted graph implemented as a nested set of dictionaries. The weights in the graph are
the number of calls made by a caller to its callee.

A -cutoff command-line argument informs the program to ignore edges below a certain weight.
An -undirected flag informs the program to consider the edge between caller and callee in both
directions. By default, it only adds edges radiating from the caller. In many cases, radiating edges
from the callee as well will speciously connect procs by common primitives like clock. While this
is useful for identifying procs that may need to be placed in a common base pacakge, it may not
provide much benefit for classifying procs according to behavior or subject.

The level of verbosity in output may be varied at the command line, as well. By providing an
integer argument to the -verbosity option, a user will be given access to increasingly descriptive
debug output. Verbosity level greater than 2 dumps the final graph in its entirety. By default,
the program only prints each group idenitifer followed by the proc identifier associated with that

group.

4 Experiments

In order to establish the effectiveness of the TURTLES library in yielding useful information and
reasonable clustering, a few experiments were undertaken in concert with development efforts.
The experiments began with the TURTLES test suite to establish ground truths for fundamental
units and toy integration examples. Beyond these contrived scenarios, the TURTLES library was
incorporated into a couple of non-trivial programs. These included the author’s implementation
of Slowbird, a programming exercise used in Flight Aware’s onboarding process, and the MMHF
program which introduced the challenge of crossing fork boundaries.

4.1 The TURTLES Test Suite

A set of unit, functional, and integration tests was devised to be run under the test-package make
target and included tests on the hashing function, options processing, persistence mechanisms,
and toy program smoke tests for recursively nested proc calls and fork boundaries. The reader is
encouraged to review the test suite for the library to see particular examples of edge cases that led
to revisions in the design.

4.2 Non-Trivial Programs
4.2.1 Slowbird

Slowbird is a simple Tcl event loop program that consumes a stream of tab-separated value (TSV)

input of flight positions, computes stream statistics, and presents the information to the console.
Over multiple runs, the clustering algorithm produces consistent component counts within the
classes of undirected or directed graphs as demonstrated in Table 4.2.1.

Edge Class Slowbird PID Clusters

undirected 84717 34
undirected 93015 33
undirected 28944 34
undirected 4117 33
undirected 28244 33
directed 28944 49
directed 4117 47
directed 28244 48
directed 93015 48
directed 84717 47

Table 4.2.1: Slowbird Cluster Counts

As expected, the directed graph is more fragmented without the unifying effect of common
callees. However, it provides a clearer delineation of separate call stack descent paths. Common
functions are associated with the cluster of first contact.

Comparing the directed and undirected clusterings for a given run illustrates the high connec-
tivity of common utility functions. The standard : :clock proc offers the most striking example of
this in Table 4.2.2.

As might be expected, the TURTLES enter and leave handlers incur a fair amount of overhead.
The primary method invoked from the root of the Tcl event loop has the largest cumulative time
of the original Slowbird code. A sample execution timing by callee for the Slowbird run with PID

Cluster Root

| Members

Cluster Root

| Members

::CACHE__PROC_ CHILD
:CACHE_PROC_PAGE
::UniversalDaystreamClient
;i critel_load
::__create_ cached_ proc
::alias_ flavor

::another parsed_ flavor
::auto__import

::clock

::fa_ cat::basecat

::fa_ cat::catalog entries
::fa_ cat::setcat

::fa_ loadconfig
::fa_loadconfig pattern

=fa_ logger_init
::handle_message
::http::init

::ip::int ToString
::ipr:maskTolnt

::iip::version

;itel:: find init

::log stats_ worker
::msgcat::GetPreferences
::msgcat::Init
::msgcat::mcload
r:msgcat::mcmset
::msgcat::mcpackageconfig
::msgcat::mcpackagelocale
::msgcat::mcset
::setup__console
::shal::KnownImplementations
::shal::LoadAccelerator
::shal::SwitchTo
::sha2::KnownImplementations
::sha2::LoadAccelerator
::sha2::SwitchTo

::shuffle list

::struct::set:: Knownlmplementations
s:struct::set::Load Accelerator
::struct::set::SwitchTo
::iteliiclock:: Init TZData
::teliiclock::Initialize
::teliiclock::LocalizeFormat
::teli:clock::SetupTimeZone
:teliiclock::mcMerge
::teliiclock::meget
::turtles::on__proc__enter
;:turtles::on__proc_ leave

—_

o Q0 R e R e b e e b e e e e e R RO R R e RO R = DD R e e e e s e e e e e e QO N

:: critel load
::__create__cached__proc
:;alias flavor
;:auto_import

::clock

::fa_ cat::basecat

»:fa_ cat::catalog_entries
::fa_ cat::setcat
::fa_loadconfig pattern
::fa_logger_ init
::handle__message
::http::init

zip::ToString
ziprmaskTolnt
:rip::version

ciitel:: find init
s:msgcat::mcemset
;:msgcat::meset
::setup__console
::shal::KnownImplementations
::shal::LoadAccelerator
::shal::SwitchTo
::sha2::KnownImplementations
::sha2::Load Accelerator
::sha2::SwitchTo

::shuffle list

::struct::set:: Knownlmplementations

::struct::set::Load Accelerator
::istruct::set::SwitchTo
::iteliiclock::InitTZData
::teliiclock::Initialize
::turtles::on_ proc__enter
::turtles::on_ proc_ leave

e e e e e e e e e N T e R e e e S S U

(a) Directed

(b) Undirected

Table 4.2.2: Slowbird Cluster Member Counts

4117 is given in Table 4.2.3 with calls accruing under 10 ms of execution omitted for space. This is
available from final storage through the default view calls_by_callee.

Callee Calls tiotar (1S) tavg (us)
::iturtles::on__proc__enter 25948 4170237 160
::slowbird::handle__message 22875 3713416 162
::turtles::on__proc_ leave 25944 3083702 118
:clock 549 270313 492
:teliiclock::meget 29 210344 7253
::fa_ cat::setcat 1425 182328 127
::msgcat::mcpackagelocale 54 137347 2543
::msgcat::Load 28 90415 3229
::another parsed_ flavor 148 78605 531
iteli:clock::mcMerge 72 38777 538
::msgcat::mcset 229 26636 116
::alias flavor 171 22923 134
::slowbird::logger 3 11966 3988
::UniversalDaystreamClient 1 11364 11364
::slowbird::log_ stats 3 10718 3572

::msgcat::GetPreferences 81 10301 127

Table 4.2.3: Slowbird Callee Timing
According to another default view, unused_procs, 779 other procs were defined but never called.

4.2.2 Multi-Machine HyperFeed (MMHF)

Multi-Machine HyperFeed is one of the core backend services used by Flight Aware for analyzing,
collating, and producing flight data for use by Flight Aware’s downstream consumers. It expands
on the single-machine version presented by Zach Conn in 2016[5].

The decrease in cluster counts from directed to undirected graphs was repeated for MMHEF.
Because the counts of functions and clusters are much higher for MMHF than for Slowbird, the
cluster sizes are presented in sample histograms for a MMHF parent and a MMHF child in Figure 1.

, I I8 Directed (Parent) | |

10 g I8 Undirected (Parent) E

® B I8 Directed (Child) | |
s Undirected (Child) | |
2 10° ¢ E
) | I I I |
00 b mr_ - - .

LI —— LI —— T T T] LI
100 10t 102 103
Cluster Size

Figure 1: MMHF Cluster Counts

Sample execution timings of the most time-intensive functions for a MMHF parent process and
child are given in Table 4.2.4 and Table 4.2.5, respectively. A few exceptions denote TURTLES
procs and functions whose names forced a refactoring of the proc name sanity check.

Callee Calls tiotar (1S) tavg (us)
s:turtles::on_ proc__enter 58214 3264605 56
;:turtles::on__proc_ leave 58208 3228439 55
s:radarbox 44354 1150864 25
::feedstream::initialize 1 1038205 1038205
:feedstream::reload__airport_ aliases_ and_ airline_ codes 1 1014875 1014875
:tel::clock::format 990 496919 501
:teliiclock::ParseClockFormatFormat 54 326480 6045
::teliiclock::ParseClockFormatFormat2 54 265048 4908
:teliiclock::LocalizeFormat 54 211535 3917
:msgcat::me 648 167107 257
=fa_def facility 4316 105557 24
::fa_ cat::setcat 3004 77515 25
::load__airline statics 1 54691 54691
::sqlbird::select 1 54440 54440
sturtles::persistence::base::finalize 1 17874 17874
:teli:clock::formatproc’%B’cs_ cz 24 694 28
:itelizclock::formatproc’%a %b %d %H:%M:%S %Z %Y’c 1 103 103

Table 4.2.4: MMHF Parent Execution Timings

Callee Calls tiotar (#S) tawvg (us)
;rconsume__rmq 142 30512117 214874
s:process__parsed__line 142 30440310 214368
::really _process__parsed_ line 142 29504325 207776
::supercatch 142 26035885 183351
::handle_ position 73 24797668 339694
::handle_ position__after tita_ check 69 23757255 344308
::handle_ vetted_ position 69 23713692 343676
::process__position_ for_all_pedigreed_ forks 67 20238384 302065
::handle_asdi__adsb 52 20047812 385534
::process__position_ for_one_ fork 211 19930730 94458
s:turtles::on_ proc_ leave 141295 14090878 99
::turtles::on__proc__enter 141303 13940794 98

Table 4.2.5: MMHF Child Execution Timings

The count of unused procs for this parent process came to 6324. By contrast, a sample child
process reported 5581 unused procs. The discrepancy is likely composed of the functions which
the children use to perform the actual message processing whereas the parent simply manages the
children.

5 Conclusions

A number of challenges were encountered during the course of development, many of which arose
from the author’s unfamiliarity with the Tcl language.

The complete isolation of threads into separate Tcl interpreters was a boon for reasoning about
safety and contention since there could be no bleed between threads except as explicitly delivered by
message or thread state variable. Conversely, it was not immediately obvious that all the prior pack-
age and source imports done in the main thread needed to be replicated for every thread: : create.
Some reduction of this obligatory boilerplate, perhaps as an option passed to thread::create to
copy imports to the spawned thread, would be welcome. Equally not obvious was whether trace
handlers would survive a fork boundary crossing, but these thankfully persisted. Otherwise, the
fork safety mechanism would require a substantial increase in complexity to be of use.

The inconsistent behavior of forking across platforms was also an impediment. The fork safety
mechanisms were tested on FreeBSD and Linux, but the support for forking in Tcl on MacOS X
has at least one outstanding issue that has remained open for years[13]. The age of this bug and
Apple’s inexorable march toward locking down development on MacOS X (cf. the release notes for
Catalina[11]) leave little hope for improvement in this regard. Consequently, the forking cases are
skipped when building and installing on MacOS X, and users of TURTLES should take this into
consideration during development.

Attempting to leverage signal trapping in multithreaded code raised similar issues[3] when trying
to instrument programs like Slowbird. There appears to be critical technical debt left outstanding
with respect to Tcl’s interfacing with the various operating systems on which it is available.

As a relative newcomer to the language, trying to keep straight the levels of string escaping and
avoiding over-substitution proved difficult, especially as it related to passing thread messages. The
thread message passing model itself incurs significant overhead, and there are likely better ways to
deliver call record updates to the recorder thread.

The TURTLES project made extensive use of Tcl dictionaries as they were easier to manipu-
late than Tcl arrays. Frequently, the data layout encouraged the nesting of dictionaries which is
reasonable in theory but suboptimal in practice. Making minor adjustments to deep layers in a
nested dictionary proved slow, and the syntactically elegant dict with subcommand often had to
be eschewed for more verbose forms to access and update dictionary contents. The most salient
example of this was the apparent inability to add keys at the deepest level of a dict with body
since variable assignments to heretofore unknown variable names are placed in the global namespace
when unqualified. The lack of an intelligent, generic dictionary comparator also hampered efforts
to quickly construct unit tests since Everything Is A String (EIAS).

The interaction between info, uplevel, and namespace could stand to be comprehensively
documented with representative examples. It was not until late in the development cycle that
namespace origin supplanted namespace which so that aliased calls could be properly associated
with their respective definitions and thus produce more accurate call graphs.

With all that said, developing the TURTLES library served as an informative immersion into
Tcl and its paradigms. The several outstanding issues that were encountered are not insoluble

but do require some targeted attention to help Tcl improve as a platform for development. The
TURTLES library appears to have achieved most of its goals apart from performance and support
for certain execution edge cases. Some of the areas for potential improvement of the TURTLES
library are expounded upon in the following Future Work section.

6 Future Work

As stated previously, the performance of TURTLES leaves something to be desired. Smoke tests
with Slowbird exhibited a slowdown in execution under instrumentation by about half. To this
end, a restructuring of the communication with the recorder thread is proposed. By using chans
and designing a simple protocol, the need for complex snippets can be obviated, and the messages
can be reduced appropriately to mere data. Some work is required to determine whether this is
feasible, but it seems like the simplest solution with the highest potential for gain.

While persisting to SQLite is sufficient for singly executing programs, the demands of multiple
workers may necessitate a more scalable persistence mechanism. The obvious choice is a Post-
GreSQL database, to which much of the logic already present could be easily ported. This would
also enable quicker aggregation over multiple runs if each run included a run ID as a column in a
set of multi-run tables.

The TURTLES project has so far focused exclusively on proc tracing. Adding variable tracing
would boost the usefulness of the project since records of variable access can provide another window
into code patterns (or anti-patterns) and memory usage.

The issue of trace ID determinism has been resolved for the current scope and implementation.
However, it would be beneficial if there were a descent path ID that traced an execution path from
root call to leaf in order to provide more granular call graphs with greater confidence. This may
require modification of the Tcl interpreter itself to ensure consistency and correctness.

One last avenue of future development is to research retroactive and automatic instrumentation.
It may not always be possible to bootstrap the TURTLES library early enough, or it may be desired
to attach to a running Tcl program and turn instrumentation on and off at will. Being able to
retroactively load trace handlers for existing commands and to transparently load instrumentation
during thread spawns would complete the execution picture.

The TURTLES project has been demonstrated to successfully trace and report execution behav-
ior of different types of programs, even across fork boundaries. While there is a rich and daunting
field of future work to pursue, the author hopes that this effort will contribute to improving the Tcl
platform for neophytes and veterans alike.

References

[1] Anonymous. HCS clustering algorithm. July 25, 2019. URL: https://en.wikipedia.org/
wiki/Universal_hashing#Hashing_ strings.

[2] Anonymous. Universal hashing. Hashing strings. Wikimedia Foundation, Inc. Sept. 25, 2019.
URL: https://en.wikipedia.org/wiki/Universal_hashing#Hashing strings.

[3] Frederic Bonnet, Christian Werner, Oliver Jowett, Peter da Silva, and Jeff Lawson. [UP-
DATED: TclX patch available] Potential solution to "Make TclX’s signal trap handlers safe
to use with threaded Tcl. June 13, 2019. URL: https://github.com/flightaware/Tcl-
bounties/issues/32.

Callgrind: a call-graph generating cache and branch prediction profiler. 2019. URL: http:
//valgrind.org/docs/manual/cl-manual.html.

Hyperfeed: FlightAware’s parallel flight tracking engine. 23rd Annual Tcl/Tk Conference.
Flight Aware. Houston, TX, Nov. 17, 2016. URL: https://www.tcl.tk/community/tc12016/
assets/talk37/hyperfeed-paper.pdf.

Donal Fellows and Jeff Hobbs. emdtrace. Aug. 15, 2015. URL: https://wiki.tcl-lang.org/
page/cmdtrace (visited on 07/16/2019).

Donal Fellows, Richard Suchenwirth, Andy Goth, and Ashok P. Nadkarni. disassemble. Apr. 4,
2018. URL: https://wiki.tcl-lang.org/page/disassemble (visited on 07/12/2019).

Donal Fellows, Torsten Berg, David S. Cargo, Larry Virden, Jos Decoster, et al. TclX. Sept. 20,
2018. URL: https://wiki.tcl-lang.org/page/tclx.

David Hipp. The Tcl interface to the SQLite library. Hipp, Wyrick & Company, Inc. (Hwaci).
Aug. 29, 2019. URL: https://www.sqlite.org/tclsqlite.html.

Mark Janssen, Andy Goth, Larry Virden, Donal Fellows, Harold Oehlmann, et al. cmdline.
July 8, 2019. URL: https://core.tcl-lang.org/page/cmdline.

macOS Catalina 10.15 Release Notes. Scripting Language Runtimes: Deprecations. Apple,
Inc. URL: https://developer.apple.com/documentation/macos_release_notes/macos_
catalina_10_15_release_notes#3318257 (visited on 10/11/2019).

MPI Forum. MPI Forum. Oct. 10, 2019. URL: https://www.mpi-forum.org/.

Jan Nijtmans, Donald Porter, and Harald Oehlmann. unizeventfork-1.1 hangs on OS X. URL:
https://core.tcl-lang.org/tcl/tktview/c4e230£29b (visited on 08/09/2019).

Jan Nijtmans, Nathan Coulter, Andy Goth, Matthias Hoffmann, Rob Maris, et al. thread.
Apr. 5, 2019. URL: https://wiki.tcl-lang.org/page/thread.

Open MPI: Open Source High Performance Computing. The Open MPI Project. URL: https:
//www.open-mpi.org/.

Gopal Pandurangan. Distributed Network Algorithms. Feb. 20, 2019. URL: https://sites.
google.com/site/gopalpandurangan/dnabook.pdf.

GHC Team. Glasgow Haskell Compiler User’s Guide. Profiling. 2019. URL: https://downloads.
haskell.org/~ghc/latest/docs/html/users_guide/profiling.html.

Tcl Core Team. Tcl/Tk 8.5 Manual. Mar. 26, 2019. URL: https://www.tcl-lang.org/man/
tcl8.5/.
Tcl Core Team. Tel/Tk 8.6 Manual. Nov. 15, 2018. URL: https://www.tcl-lang.org/man/
tcl8.6/.

Larry Virden, Julian M. Noble, Peter Caffin, Donal Fellows, Nathan Coulter, et al. platform.
Apr. 6, 2016. URL: https://wiki.tcl-lang.org/page/platform.

Larry Virden, Donald Porter, Donal Fellows, Nathan Coulter, Aldo Buratti, et al. tcltest. URL:
https://wiki.tcl-lang.org/page/tcltest.

Michael Yantosca. Gallagher-Humblet-Spira Connected Components with MPI. May 8, 2019.
URL: https://github.com/myantosca/ghs-coco.

