
The Sobyk Binary Distribution
Presented at

The 26th Annual Annual Tcl Developer’s Conference
(Tcl‘2019)

Houston, TX

November 4-8, 2019  

Sean Deely Woods
Senior Developer

Test and Evaluation Solutions, LLC
400 Holiday Court

Suite 204
Warrenton, VA 20185

Email: yoda@etoyoc.com
Website: http://www.etoyoc.com

Abstract
ActiveState has stepped out of the business of actively developing Tcl. The side effect of their

absence is that the core team no longer has a reference binary distribution where the impact of
new developments in the core can be measured against existing applications and production
software.  
 
Existing kit architectures do a fairly decent job of keeping up to date with released packages
and integrating them into a released core. The process requires constructing a lot of boilerplate
code. Some is shell script. Some is C code. And the process is made difficult by a profound
lack of integration  
standards when it comes to package development for Tcl/Tk. This “boiler plate” actually ends
up including a lot of institutional knowledge about the quirks of each package’s library re-
quirements (often varying by platform), build system limitations, and installer quirks. All of
this was information that was tirelessly gathered by the staff at Active State.  

mailto:yoda@etoyoc.com
http://www.etoyoc.com
mailto:yoda@etoyoc.com
http://www.etoyoc.com

Introduction
Tcl is really two different communities trying to live under one tent. One group are the bril-

liant, talented, hard working core developers and want to advance Tcl in 9 directions at once.
The other is the brilliant, talented, and hard working users who use Tcl to advance their own
projects in 9 directions at once.

In between used to be ActiveState. They would take what the hardcore developers made and
beat it into a shape the hardcore users could use. They did a brilliant enough job that both
camps in our community didn't realize how important ActiveState's role was until they ceased
to perform it.

2018-2019 war our first release (8.6.9) without ActiveState. And it was rough. I should know, I
manage to wear both a hardcore Tcl Core Developer AND a hardcore Tcl Application Developer
hat.

I'm the author of Tip430 (adding Zipfs to the core). I'm a maintainer of Tcllib. I'm one of the
poor schleps who maintains the Tcl Extension Architecture's tcl.m4 macro.

I am also the lead developer for a tiny little company that uses Tcl to perform very advanced
Naval Simulations. And in my non-existent spare time I'm trying to write a Tcl based game en-
gine.

In this past year I have yelled, and been yelled at. My implementation of ZipFS while I did
my best, had limitations that needed to be addressed on contact with real applications, and I
heard about it. Multiple issues in 8.6.9 broke the application I develop at work, and I made sure
I was heard. We've also had a major rumble over in Tcllib as two of the maintainers (and I was
one of them) found ourselves on opposite sides of a definition of what "working code" meant.
And the scars of those conversations reverberate to this day.

Yelling is what happens when talking stops working. And in every case yelling involved
someone who had a legitimate need that was not being addressed by developer who was sud-
denly blindsided by a requirement they never knew existed.

How IT People Communicate
We, as IT people, don't tend to communicate complex ideas in human terms. The reason is

that human language is inadaquate at describing complex technical ideas. We aren't anti-social,
we aren't ineffective communicators, there is simply no decent way in prose to more precisely
describe that 1+1=2.1

As such there is a certain amount of passing around a finished implementation, and allowing
a fellow developer to "grok" it that must take place for an idea to be communicated. But this
process tends to focus on technical issues of making the implementation function from a logic
and syntax perspective. Problems that can't be communicated in code tend to be drowned out.

"This application that I pay my mortgage with is crashing" from a user isn't as compelling as a re-
gression test on one's own machine that proves otherwise. "This change to the core is causing an
extension I depend on to stop compiling" is not as compelling as how that how much simpler that
chunk of the core is now that it doesn't need to deal with that ill-designed API.

I have found the only way to prove that a change is causing a problem to the community at
large involves having them replicate the error. And as my problems tend to be pretty deep,

 And if the 360 pages of Principia Mathematica by Russell and Whitehead is any guide, ground-up discussions can 1

be a tad long winded as well.

replicating that error in a particular environment. And because the other party's time is pre-
cious , providing a kit that allows them to replicate the environment on their machine. 2

That got me to thinking, what if we had a community resource which would allow developers
to re-create an entire binary distribution of Tcl on their own machine?

Sobyk
Sobyk is a binary distribution for Tcl. It builds viable Tcl based applications for the Mac and

Windows platforms. Two environments that are generally hostile to creativity, yet inexplicable
popular with end users. Where possible, extensions are statically compiled for the platform. It
utilizes a Tcl based build system to allow the same automation to work, unmodified, on plat-
forms that either lack unix sh, or where the file path management for their sh is dodgy at best .3

Sobyk can build an in-house application. It build a retail software title, such as a game or App
store utility. The ultimate user of the code probably has no idea what Tcl is, or that their applica-
tion is written in it.

The idea is that whoever is assembling the applications is, on some level, a Tcl developer.
They probably have both Tcl and C code that need to be integrated. While talented and intelli-
gent, they do need help with packaging, because binary Tcl extensions are utterly inconsistent in
build system fulfillment. They also have users with their own crazy requirements that will like-
ly involve custom software.

Sobyk works directly from Fossil and Git checkouts, and only resorts to Tarballs for non-tcl
external dependencies. Sobyk can be given directions for how to work with code that hasn't
been manually prepped for release. (Important for experimental builds of the Tcl core.) And
wherever possible it keeps all of its markup and automation under one set of rules, and in a
language that a Tcl developer of a Tcl based application are likely to know already: Tcl.

The name Sobyk was invented by an online name generator for fantasy games. It was selected
for it's aesthetics from a pool of a few hundred candidates. I chose a random name because it
means nothing. There is no Acronym. There is no mythical figure . There is no computer science 4

term. There is only Sobyk.
A distinct name is important, because names tend to get stamped all over a project. And the

intended use for this project is to be cargo-culted and used to make other people's projects. A
global search and replace can find "Sobyk" and replace it with "Wayland Yutani Power Shell", or
"Throatwarbler Mangrove", without fear of accidentally renaming references to an external C
function, or introducing comical typos in the documentation.
Core Team (Non)Involvement

The concept is that Sobyk will not be an officially sanctioned project on the part of the Tcl Core
Team (TCT.) Instead, Sobyk is a fictitious "customer" who takes what the TCT releases, and fig-
ures out how to make those releases into viable products. How to adapt/update/enthrall pack-
ages into melding with the core to become finished products.

 My time is apparently free, however. 🙄2

 (cough) Microsoft Windows.3

 Well, there was an Egyptian God named Sobek, at least according to: https://en.wikipedia.org/wiki/Sobek. 4

But I only discovered that after putting the string into a search engine to make sure it wasn't a sex act on Urban Dic-
tionary or a swear word in a foreign language.

https://en.wikipedia.org/wiki/Sobek

The distinct name gives a bit of "Plausible Deniability" to the core team. This allows Sobyk to
make policies and design decisions independent of the TIP process, divorced from the official
Tcl release cycle, and be answerable only to its user base.

Sobyk Basics
Sobyk is a fossil repository, which unpacks a build system I first described in Practcl: A Tcl-

Based Build Automation Tool for C Extensions . The concept of Practcl is the core of all of the tools 5

needed to assemble a working kit are distributed as module in a single Tcl script file. What ca-
pabilities are not present in the library itself, or the Tcl core that is interpreting it, the library
contains code to download and install.

The instructions to build a sobyk kit are thus (assuming you have the source code unpacked):
tclsh	make.tcl	all	

That's it. The make.tcl script will go through the motions of cloning the SCM repositories of
the core as well as libraries and extensions the kit will use. The script unpacks them, configures
them, compiles them, and integrates them into a statically linked, self-contained executable.

Two executables, actually. One sobyk is a Tcl shell with all of the extensions that do not require
Tk. wishkit is all of the products included in sobyk, plus Tk and extensions that rely on Tk.

Walkthrough
Now, I realize a one line script to generate a Tclkit is nothing new. So, let us review what end-

ed up happening when we ran that script. Let us back up our example and go with a file scheme
I actually use in practice:
mkdir	-p	~/build/myproject/sobyk		 	 	 #	Build	our	directory	Structure	
mkdir	-p	~/build/myproject/build-macos	
cd	~/build/myproject/sobyk	
fossil	open	~/.local/downloads/fossil/sobyk.fossil	 #	Unpack	the	sobyk	source	code	
cd	~/build/myproject/build-macos		 	 	 #	Enter	the	directory	for	the	build	
tclsh	../sobyk/make.tcl	all	 	 	 	 #	Run	make.tcl	from	sobyk	in	our	build	directory	

The make.tcl file assumes that whatever directory it is being run at is the directory you want
the build product to go. (Much like ./configure.) After running you will see the following file
system emerge under ~/build/myproject/sobyk

pkg/ Toplevel folder where binaries are built. Every folder is a different core component or
project

PKGROOT/ Install location where non-Practcl projects deposit their contributions for the Kit's vir-
tual file system

objs/ Folder where Practcl will deposit .o/.obj files generated during compilation.

build/ Directory where staged builds deposit products, and dynamically generated C and Tcl
files are deposited.

password.txt Cleartext password for cryptographically enciphering proprietary code through helper
scripts

make.tcl Script redirect to invoke the make.tcl to wherever the make.tcl file that constructed
this directory actually resides in.

 Available Online: https://tcl.tk/community/tcl2016/assets/talk42/practcl-paper-v1.0.1.pdf5

Customizing Sobyk
Sobyk's build system is an object model. Object can contain other objects, and at all steps

along the way object can spawn new objects.
Our recipe for a Tk-less kit contains segments like this:

my	add_project	tcl	{	
		class	subproject.core	
		name	tcl	
		tag	release	
		static	1	
		fossil_url	http://fossil.etoyoc.com/fossil/tcl	
}	

This snippet adds a new object to the kit "tcl" which represents the Tcl core. That description
includes a class of behaviors, an SCM tag, and a URL to clone the SCM from. Sobyk under-
stands fossil and git at present, so a Git-based project looks like:
my	add_project	rl_json	{	
		class	subproject.binary	
		git_url	https://github.com/RubyLane/rl_json	
		tag	master	
		install	static	
}	

The fact the SCM is Git instead of Fossil is denoted by populating the git_url field instead of
the fossil_url field. There is also a file_url for tarball/zip based distributions as well. A project
can have multiple distribution types, and if multiples types are given, Practcl will try each in the
following order: fossil, git, file.

Some sub-projects require customized behavior, and Practcl allows for existing methods to be
replaced or new methods added by adding an extra argument:
my	add_project	tls	{	
		class	subproject.binary	
		fossil_url	https://core.tcl.tk/tcltls	
		tag	trunk	
		install	static	
		initfunc	Tls_Init	
		libfile	tcltls.a	
		pkg_name	tls	
}	{	
		#	The	tls	package	is	a	little	weird,	so	we		
		#	have	to	be	a	little	more	explicit	
		#	about	linker	products	because	the		
		#	Makefile	doesn't	give	us	the	normal	hints	
		#	that	a	TEA	makefile	would	
		method	linker-products	{configdict}	{	
				set	srcdir	[my	define	get	builddir]	
				set	dat	[::practcl::read_sh_file	[file	join	$srcdir	Makefile]]	
				return	"	[dict	get	$dat	LIBS]	[file	join	$srcdir	tcltls.a]"	
		}	
}	

sobyk_bare Tclkit with all of the binary components for Sobyk, but without the attached VFS

sobyk.vfs The virtual file system for Sobyk's executable

sobyk The completed Sobyk executable with Zip based VFS appended

wishkit_bare Wishkit with all binary components for Sobyk, Tk, and additional Tk extensions

wishkit.vfs The virtual file system for Wishkit's executable

wishkit The completed Wishkit executable with Zip based VFS appended

In this case, we treat TLS as a TEA extension, but because it's not really a TEA extension, we
require a little magic to link it properly. So we replace the method that issues the linking instruc-
tions. You can also see we feed specifics about this project's init function and project name are
populated in the configuration dictionary.

The "behavior customization" script is actually a call to oo::objdefine. Any statement valid in an
oo::objdefine block is valid in an object behavior script. Thus, we get an easy to explain way of
injecting custom code that can teach a novice Tcl a well documented trick from TclOO rather
than attempt to wrap things in a domain specific language.

Sobyk attempts at all times to use facilities in Tcl wherever possible. You'll note the use of
"my".	add_project is a method of the object being manipulated to generate a child object. This
script is invoked inside the namespace of the object we are spawning objects into. The method
also works outside of the object's namespace. The objects produced are given names that are
local to the parent object, and to look them up we provide linking and introspection tools.
Which I will describe in a make file section of this paper.

Creating a Make.tcl File
Sobyk make.tcl files are Tcl scripts. While it has facilities for performing Make style directed

graph dependency fulfillment, that is not its normal mode of operation. Make accepts a number
of commands with arguments, and those commands and arguments are designed to perform
the day-to-day interactions expected of a project that needs to compile, link, and sometimes
even take control of one or more other projects.

For backward compatibility with TEA, Practcl extensions have a Makefile which translates
"make all ; make install" into the equivilent invocation of the make.tcl file. The Make.tcl file in
turn has facilities to do things that are, while not impossible, downright annoying to try to do
with an existing makefile:

• Perform either a static or shared build on command
• Install the project to a specified location
• Perform and SCM update and recompile as needed. Or switch to a different SCM tag.
• Generate a zip file for distribution in teacup
• Install only one or more modules from a pure-tcl library
• Have autoconf rebuild the ./configure script for the package
• Re-Run ./configure with new flags
All of these actions can involved passing arguments, and arguments are awkward to pass to

Make.
Each Makefile is a hybrid of standard Tcl script accepting arguments from the command line,

and a dependency graph driven build fulfillment system. Each verb that is intended to take ar-
guments must be given as the first argument. If the verb is not a special keyword, it is treated as
a trigger for a dependency.

The first part of the Makefile is creating objects that represent the ultimate build products for
our project:

set	dat	[::practcl::read_configuration	$CWD]	
::practcl::tclkit		create	SOBYK	$dat	
SOBYK		define	set	name	sobyk	
SOBYK		source	[file	join	$::SRCDIR	tclkit.ini]	

In this snippet, we use the ::practcl::read_configuration command to sniff the build directory for
autoconf/autosetup data, and return the pertinent bits as a dictionary. That dictionary is passed
to the new object SOBYK who will represent the kit we ultimately wish to build. We also tell
SOBYK to read additional instructions from a file. (The contents of which we discussed in the
Customizing Sobyk section.)

Next, we build our dependency tree:
::practcl::target	tcltk	{	
		depends	{deps	configure	clean	local-env}	
		triggers	{script-packages	script-pkgindex}	
		filename	[file	join	$CWD	config.tcl]	
}	
::practcl::target	tclkit	{	
		aliases	{example	sobyk}	
		depends	{deps	tcltk	packages	practcl}	
		object		SOBYK	
}	

All of the targets in the dependency tree have a configuration dictionary. Several of these keys
have special meaning:

Next, we process command line arguments:
switch	[lindex	$argv	0]	{	
		all	{		::practcl::trigger	tclkit	}	
		default	{	
				::practcl::trigger	{*}$argv	
		}	
}	

The ::practcl::trigger command walks the dependency graph and populates the global array
make() with a boolean flag indicating which triggers have been activated, and which have not.

We can then test what portions of our build process need to be run, and because this is a Tcl
script, we can mandate the order of events:
if	{$make(clean)}	{		
		#	Actions	to	cleanup	build	products		
}	

if	{$make(tclkit)}	{	
		#	Actions	to	compile,	link,	and	wrap	tclkit	
}	

The concept is that our script is a pipeline, and thus one trigger can have effects in several
stages of the process.

Individual Practcl objects also have their own dependency trees. In fact, the ::practcl::trigger
command is just a convenience wrapper around a global object ::practcl::LOCAL.	
proc	::practcl::trigger	{args}	{	
		::practcl::LOCAL	make	trigger	{*}$args	
	foreach	{name	obj}	[::practcl::LOCAL	make	objects]	{	

aliases Alternate names this trigger will answer to

depends Indicates a target requires the fulfillment of another target

filename The name of a file this target produces. Used as a check to see if it has been fulfilled

object Used to associate a Practcl object with a trigger.

triggers Indicates that the execution of this target should also activate other targets

				set	::make($name)	[$obj	do]	
		}	
}	
proc	::practcl::depends	{args}	{	
		::practcl::LOCAL	make	depends	{*}$args	
}	
proc	::practcl::target	{name	info	{action	{}}}	{	
		set	obj	[::practcl::LOCAL	make	task	$name	$info	$action]	
		set	::make($name)	0	
		set	filename	[$obj	define	get	filename]	
		if	{$filename	ne	{}}	{	
				set	::target($name)	$filename	
		}	
}	

My early efforts with Practcl were heavily influence by smake . And while I realize a global 6

array with a really common name is not a great design paradigm in general, it does feel kind of
right for small projects with a single deliverable. However, of your project already makes use of
the make variable, and or you hate that sort of shortcut with the fire of 1000 suns in principle,
Practcl is perfectly happy NOT operating in this mode. As you can see,
practcl::trigger, ::practcl::depends, and ::practcl::target are all sugar coating interactions with
the ::practcl::LOCAL object's make method ensemble We could easily rewrite those sections of our
make.tcl file without the global array:
::practcl::LOCAL	make	task	tcltk	{	
		depends	{deps	configure	clean	local-env}	
		triggers	{script-packages	script-pkgindex}	
		filename	[file	join	$CWD	config.tcl]	
}	
::practcl::LOCAL	make	task	tclkit	{	
		aliases	{example	sobyk}	
		depends	{deps	tcltk	packages	practcl}	
		object		SOBYK	
}	
switch	[lindex	$argv	0]	{	
		all	{		::practcl::LOCAL	make	trigger	tclkit	}	
		default	{	
				::practcl::LOCAL	make	trigger	{*}$argv	
		}	
}	
set	makeobjs	[::practcl::LOCAL	make	objects]	
if	{[[dict	get	$makeobj	clean]	do]}	{	
		#	Perform	clean	actions	
}	
if	{[[dict	get	$makeobj	tclkit]	do]}	{	
		#	Actions	to	compile,	link,	and	wrap	tclkit	
}	

With kits, it is also useful to place make triggers on the Tclkit object itself. If our project sup-
ports two different kits. The make ensemble would work just as easily on our sobyk an wishkit
objects as they would on ::practcl::LOCAL. The advantage of ::practcl::LOCAL is that it is guaran-
teed to exist as soon as practcl package is loaded.

Cross Compile Support
Sobyk looks in the build directory for a file named config.site. The contents of this file are

identical to any other MinGW cross compile, and contain a series of environmental variables
pointing the build system to the proper compiler, linker, etc, as well as flags to feed to each.
Sobyk only supports one build target per build directory, but you can have any number of build
directories open in what I call "the sandbox."

 Smake is a pure-tcl directed graph style build system: http://people.fishpool.fi/~setok/proj/smake/6

http://config.site

Managing Multiple Projects
My build folder in my home directory looks a bit like this:

A core developer who wished to maintain a sobyk build for multiple versions of Tcl would
probably have:

The nice thing about Sobyk is that each of these profiles is maintained in its own file system.
And the profile not only includes a specific Tcl/Tk core, but it also includes the proper version
for each Tcl/Tk package that supports that core. Those can be core supported packages, external
packages, little creature comforts that provide toys that suite the developer's fancy, etc.

irm-trunk/build-macos The folder where the MACOS build for IRM will be built. Because I am com-
piling on the mac, no config.site

irm-trunk/build-win32 Build folder for Win32 release. Contains a config.site with the compiler and
flags for 32 bit windows

irm-trunk/build-win64 Build folder for the Win64 release. Contains a config.site with the compiler
and flags for 64 bit windows.

irm-trunk/irm The Fossil checkout for IRM

irm-trunk/tcl Fossil checkout of the Tcl core for this project

irm-trunk/tk Fossil checkout of the Tk core for this project

irm-trunk/* Fossil/Git checkouts of all of the packages and libraries IRM depends on

sobyk/ Completely parallel file system to support Sobyk builds

irm-fsar/ A different branch if the IRM codebase to irm-trunk, which utilizes a different
versions of the core and several projects

core-tcl-8-5-release Whatever the most up-to-date version of 8.5 is at that point.

core-tcl-8-6-release The last release version

active-tcl-8-6-6 A profile mimicking ActiveTcl's core and popular packages

core-tcl-8-7 A semi-up-to-date 8.7

core-tcl-trunk Pull of everything currently checked into trunk

core-tcl-tipXXX A checkout of a particular tip this developer is either creating or evaluating,
along with its associated packages

http://config.site
http://config.site
http://config.site

Package Marketplace
Currently the Sobyk distribution only includes a handful of the most commonly used Tcl/Tk

extensions. Moving forward, we need a place for developers of extensions to be able to keep
users informed of bug fixes, new versions, and new extensions. We also need a develop a mech-
anism for identifying orphaned packages, and directing volunteer efforts to maintaining those
packages. This marketplace is not about binary builds, it is about managing the build process.
This site needs to capture the vitality of a package, any workarounds required for certain plat-
forms, and up-to-date build instructions for every profile the Sobyk supports.

I will be soliciting ideas at the US Conference this year on what this website should actually
look like, as well as what controls should be in place to ensure quality while at the same time
allowing the marketplace to grow and evolve in a timely manner. For the interim, I will be creat-
ing a separate fossil repository titled "sobyk-marketplace" which will be centrally controlled by
myself and my appointed deputies. That repository will contain a branch for every profile that
sobyk supports. The file system for every branch will contain on file per package with a ma-
chine readable description of how Sobyk can download and integrate that package into a kit.
That file will also include a machine readable description of all of the metadata and provenance
that a human developer may wish to introspect about the project.

The Sobyk Bazaar starts with the concepts I introduced in the shed system , which in turn built 7

on the foundation of the Franklin Artifacts Database . In this database, while there are nodes and 8

links, the focus of the system is on tracking history. Events are the only thing that has a definite
record. Nodes are created to interpret the records, and links between nodes are considered
somewhat ephemeral. Nodes can change types over the course of events, and links can be creat-
ed or destroyed by events.

One's "snapshot" of the database is a replay of the entire journal which stopped where you
either ran out of history, or elected to stop parsing. Each event spawns, destroys, intertwines, or
splits apart nodes in the imagination of the reader. While recreating historical events until the
present will require an expert and a few eyewitnesses, with luck moving forward this database
will serve not only as a package database, but also as a historical research tool.

There is also no single authoritative source for events. As such, the database includes a mea-
sure of skepticism and uncertainty for every event and the facts to be learned from them. A cer-
tain source can be considered more trustworthy than others (and even so, only on certain mat-
ters), but there is no designated authority save the user him or her self. Sobyk, as a distribution,
is a means for the user to outsource the decision on what to trust and what not to trust. Users
can also elect to accept its judgement on select matters, but apply their own knowledge in spe-
cific areas. A cooperative/competitive project is perfectly free to take the same data source, and
using their own sense of trust, develop different conclusions.

Projects have life cycles, and the events recorded in the Sobyk Bazaar are structured to capture
those. Here is a summary of events captured:  

 See: Introducing TOOL The Tcl Object Oriented Library, https://tcl.tk/community/tcl2015/assets/talk6/Tool_pa7 -
per.pdf

 See: http://www.benfranklin300.org/frankliniana/tos.php8

Project Events
Event Data Captured Description

project Date, Developer, Progeni-
tor, Aegis, name

Date project first created. If this is a fork of another project,
we add the field progenitor. If this project is a standalone
effort under at the auspices of a larger project (for instance
a Tcl Improvement Project (TIP)), we add the aegis field.

alternate Date, Project Lists an alternate implementation (not a fork) that performs
a similar role.

cancel Date, Event Acts as a catch-all means of negating the effect or a previ-
ous event.

distribution Date, Developer, URL,
Profile, Type, Version

A record that a distribution of the released form of this
project is available from a person or organization, and is
available for download at a stated URL

fission Date, Project, Developer,
Name

Date when a modules of a project fissions off to form a
new project in its own right

fork Date, Project, Developer,
Name

Date when a different developer put forward an alternative
version of a project. This new project will be

fusion Project, Date Date when a formerly distinct project can be considered a
component of this project

join Developer, Role, Date Date when a new developer assumes a new role in the
project

merge Project, Date Date when this project merged with another project that
was previously considered a fork, or, if developing is being
taken over by a larger project (for instance an extension
becomes part of the core)

orphaned Date Date at which the last developer has given up the last role
for this project. (This marks the project as up for grabs for
any interested party to take on development or mainte-
nance.)

release Developer, Date, Version Date of a public release, and which person or organization
released it

rename Date, name Date when a project changes names

repository Date, URL Date when a mirror or SCM repository is published for the
project

retired Date Date at which the project has technically ceased to be
technologically relevant

sever Developer, Role, Date Date when a developer ceases interacting with a project in
a given role.

successor Project, Date Links this project which is presumed to be retired with one
or more projects that perform a similar role

In addition to projects, the database tracks "porgs", short for People and Organizations. These
aren't users so much as names of parties who can impart changes on other entities in the data-
base.
Event Data Captured Description

human Date an individual developer begins involvement with
projects and organizations within the Sobyk Bazaar

organization Date an organization begins involvement with projects
and organizations with in the Sobyk Bazaar

cancel Developer, Event Acts as a catch-all means of negating the effect or a
previous event. The developer issuing the cancel is
recorded, and thus parties can evaluate the veracity

fork Developer, Name Date when a developer (presumably an organization)
splits into a second entity. That new entity gets a new
identifier and name.

join Developer, organization,
role

Date one developer (presumably human) joins with an-
other developer (presumably organization) and takes on
a given role

kudos Developer Date when a developer offers praise to another devel-
oper.

merge Developer Date when two developers (presumably organizations)
merge to form a singular developer. Also makes a
handy cleanup if one accidentally creates two different
accounts and builds a history with both.

nongratis Developer Date when one developer pronounces a different de-
veloper to be untrustworthy.

rename Developer, name Date when an individual or organization changes their
name

retired witness Date when an individual developer or organization
ceases all involvement with projects and organizations
in the Sobyk Bazaar

sever developer, organization,
role

Date one developer (presumably human) cease per-
forming a role for another developer (presumably orga-
nization).

successor Developer, Date Date when a developer indicates that all authority and
trust granted to them should be passed to another in-
dividual or organization

user Project, Date Date when a developer indicates that it/he/she utilizes
a project

Database Schema
The core schema for the Sobyk Bazaar is quite simple. We record one table with a UUID for

each event, and another with a key/value list for all data we know about an entity. The eventid
field is an optimization for the local database. It is generated by sqlite as an ever-increasing 64
bit integer. When records are exported, they are only ever referred to by UUID.

create	database	chronology	(
		eventid	integer	primary	key,	
		uuid			guuid,	
		entity	guuid,	
		source	guuid,	
		event		string,	
		date			julian	
);	

create	database	chronology_info	(
		eventid	integer	REFERENCES	chronology(eventid)	ON	UPDATE	CASCADE,	
		field			string,	
		value			string,	
		PRIMARY	KEY(eventid,field)	ON	CONFLICT	REPLACE	
);	

As the stream of events is interpreted, Sobyk Bazaar will populate the following ephemeral
tables:
create	table	entity	(
		entityid	integer	primary	key,	
		uuid	guuid,	
		type	string,	
		name	string,	
		status	string,	
		mtime	julian	
);	
create	database	entity_info	(
		entityid	integer	REFERENCES	entity(entityid)	ON	UPDATE	CASCADE,	
		field			string,	
		value			string,	
		veracity	double,	
		source		integer	REFERENCES	chronology(eventid)	ON	UPDATE	CASCADE	
);	
create	table	link	(
		linkid	integer	primary	key,	
		e1	integer	REFERENCES	entity(entityid)	ON	UPDATE	CASCADE,	
		e2	integer	REFERENCES	entity(entityid)	ON	UPDATE	CASCADE,	
		type	string,	
		veracity	double,	
		source		integer	REFERENCES	chronology(eventid)	ON	UPDATE	CASCADE	
);	
create	database	link_info	(
		linked	integer	REFERENCES	entity(entityid)	ON	UPDATE	CASCADE,	
		field			string,	
		value			string,	
		veracity	double,	
		source		integer	REFERENCES	chronology(eventid)	ON	UPDATE	CASCADE	
);	
create	table	distribution	(
		entityid	integer	REFERENCES	entity(entityid)	ON	UPDATE	CASCADE,	
		organization	integer	REFERENCES	entity(entityid)	ON	UPDATE	CASCADE,	
		type	string,	
		date	julian,	
		name	string,	
		version	string,	
		profile	string,	
		url	string,	
		source		integer	REFERENCES	chronology(eventid)	ON	UPDATE	CASCADE	
);	

As technology advances and the implementation matures, we will undoubtedly find those
ephemeral tables needs to be restructured, or additional tables added. We will probably find
other interactions that need to be added to the journal. But the core of our database, the
chronology, will remain unchanged.

Conclusion
The Sobyk project is an attempt to create a project specific enough for the TCT to identify

where core internal changes will affect downstream users, but generic enough that downstream
users can customize it to suit their own ends. The actual build process for the system is finished
and cutting production binaries for the Author's day job. Future plans for Sobyk will include a
marketplace of ideas where the history of the projects and the people who develop, distribute,
and use those projects can be recorded for posterity.

The Sobyk project's main website is: http://sobyk.com
The code is distributed via fossil at: http://sobyk.com/fossil/sobyk
Or on chisel app at:
https://chiselapp.com/user/hypnotoad/repository/sobyk/index

http://sobyk.com
http://sobyk.com/fossil/sobyk
https://chiselapp.com/user/hypnotoad/repository/sobyk/index

