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What is Multicom?

• High performance alert delivery application 
• Reads in a stream of 35 million flight event messages per day (that’s 

400 updates per second on average) 
• Matches the events against more than 440,000 alert triggers
• Sends more than 300,000 alerts each day 



Using TCL Packages to Improve 
Performance
• As FlightAware gains access to more data sources, the number of 

events processed per day is only increasing 
• Improved performance by introducing sqlite and sqlbird
• Improved durability by introducing tclrmq and zookeepertcl



Old Multicom Design

• Before sqlite and 
sqlbird were 
introduced, it ran on 
3 servers with 16 
children on each 
server (for 48 children 
total) 
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Problems with Speedtables Design

• Does not have an “OR” functionality like postgres 
• There was a lot of write contention on the speedtable cache because 

all 16 of the children on one server where attempting to write to it 



Response Following Sudden Event 
Data Increase 
• We threw more servers at the problem
• We started running 96 child processes across 6 servers 



Introducing Sqlite and Sqlbird 

• Sqlite solved the “OR” problem
• (speedtables)
foreach field {base_id ident reg origin destination aircrafttype} {

set search_list [list [list match $field $data($field)] {true enabled}]
$::st(mc_trigger_tracking) search -compare $search_list -array trigger -code {
…
}

}

• (sqlbird)
set sql “SELECT * FROM mc_trigger_tracking WHERE ident = :data(ident) OR reg = :data(reg) OR origin = 
:data(origin) OR destination = :data(destination) OR aircrafttpye = :data(aircrafttype)”
 
sqlbird::select $sql trigger {

…
}



New Multicom Design

• After sqlite and sqlbird 
were introduced, it 
ran on 2 servers with 
12 children on each 
server (for 24 children 
total) 
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The New Problem: Database 
Dependence
• New company expectation that if the database goes down, your 

application does not
•  Mutlicom was using a database table as a queue
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Using Tclrmq to Enable us to Use 
RabbitMQ
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Using Zookeepertcl to Store PITR

• Another thing that we used the database for was storing point in time 
references for each child process

• Moved this functionality to zookeeper



Conclusion

• We attribute a lot of Multicom’s continued growth and success to new 
TCL libraries such as sqlite, sqlbird, tclrmq, and zookeepertcl

• Look forward to learning about new ways that we can use TCL to 
improve this system
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