
Multicom –
FlightAware’s Alert
Delivery System

Mary Ryan Gilmore

TCL Conference 2019

What is Multicom?

• High performance alert delivery application
• Reads in a stream of 35 million flight event messages per day (that’s

400 updates per second on average)
• Matches the events against more than 440,000 alert triggers
• Sends more than 300,000 alerts each day

Using TCL Packages to Improve
Performance
• As FlightAware gains access to more data sources, the number of

events processed per day is only increasing
• Improved performance by introducing sqlite and sqlbird
• Improved durability by introducing tclrmq and zookeepertcl

Old Multicom Design

• Before sqlite and
sqlbird were
introduced, it ran on
3 servers with 16
children on each
server (for 48 children
total)

Server A

Multicom Child 1

…

Multicom Child 16

Local
Server
Cache

Speedtable
Replicated
Database

Tables

Problems with Speedtables Design

• Does not have an “OR” functionality like postgres
• There was a lot of write contention on the speedtable cache because

all 16 of the children on one server where attempting to write to it

Response Following Sudden Event
Data Increase
• We threw more servers at the problem
• We started running 96 child processes across 6 servers

Introducing Sqlite and Sqlbird

• Sqlite solved the “OR” problem
• (speedtables)
foreach field {base_id ident reg origin destination aircrafttype} {

set search_list [list [list match $field $data($field)] {true enabled}]
$::st(mc_trigger_tracking) search -compare $search_list -array trigger -code {
…
}

}

• (sqlbird)
set sql “SELECT * FROM mc_trigger_tracking WHERE ident = :data(ident) OR reg = :data(reg) OR origin =
:data(origin) OR destination = :data(destination) OR aircrafttpye = :data(aircrafttype)”

sqlbird::select $sql trigger {

…
}

New Multicom Design

• After sqlite and sqlbird
were introduced, it
ran on 2 servers with
12 children on each
server (for 24 children
total)

Server A

Multicom Child 1

…

Multicom Child 12

Local
Child
Cache

Sqlbird
Tables

Local
Child
Cache

The New Problem: Database
Dependence
• New company expectation that if the database goes down, your

application does not
• Mutlicom was using a database table as a queue

Database

Queued alerts
Email delivery channel

Android delivery channel

Apple push notification
delivery channel

Using Tclrmq to Enable us to Use
RabbitMQ

Queued alerts
Email delivery channel

Android delivery channel

Apple push notification
delivery channel

Email queue

Android queue

Apple push notification
queue

Using Zookeepertcl to Store PITR

• Another thing that we used the database for was storing point in time
references for each child process

• Moved this functionality to zookeeper

Conclusion

• We attribute a lot of Multicom’s continued growth and success to new
TCL libraries such as sqlite, sqlbird, tclrmq, and zookeepertcl

• Look forward to learning about new ways that we can use TCL to
improve this system

	Slide 1
	What is Multicom?
	Using TCL Packages to Improve Performance
	Old Multicom Design
	Problems with Speedtables Design
	Response Following Sudden Event Data Increase
	Introducing Sqlite and Sqlbird
	New Multicom Design
	The New Problem: Database Dependence
	Using Tclrmq to Enable us to Use RabbitMQ
	Using Zookeepertcl to Store PITR
	Conclusion

