

Mapping the Tcl world:
using Tcl to curate OpenStreetMap

Kevin B. Kenny
5 November 2019

How’d we get here? I’m a
Tcl geek and a map geek!

Timeline of geekiness

’60s ’70s ’80s ’90s ’00s ’10s Future!

Tcl escapes the laboratory
OpenStreetMap founded

Kevin makes
maps of
Earth and sky

Kevin starts
being a
programmer

Kevin first edits
OpenStreetmap

Kevin first imports
an external data set

Kevin maps TV
networks and
transmission links

Kevin
discovers
maps

Kevin invents several
bad scripting languages,
uses several more

The 1960’s

The 1970’s

Draw with a pen
High-resolution output
Took hours!

Draw with electrons
10 inch diagonal screen

“Instant” (well, minutes) gratification

4010map.mpeg
calcomp.mpeg

Draw with a pen
High-resolution output
Took hours!

Draw with electrons
10 inch diagonal screen

“Instant” (well, minutes) gratification

4010map.mpeg
calcomp.mpeg

The 1980’s

wb8elk-rip.mkv
wb8elk-rip.mkv

The 1990’s

Map source: Wikipedia user ‘7.11brown’, license CC-BY-SA 3.0

https://creativecommons.org/licenses/by-sa/3.0/deed.en

Hobby projects around year 2000
Prompted by Richard Suchenwirth-Bauersachs:

“Mapping Colorado” on the Wiki

Lots of pieces, no really usable ecosystem.
• TclWorld
• Shapefile reader
• Tklib map::slippy

• Tcllib mapproj
• … and so on

Andrey Shadura GSoC 2010
Tcl/Tk OpenStreetMap editor

Handler for the OSM-XML file format

Again, not integrated in the ecosystem

Trouble wth multipolygons (Tk’s
problem, not Andrey’s)

The 2010’s: OpenStreetMap

● Got back into hiking
● Appalled at the state of trail

maps
● Only citizen-mappers can fix!
● Started contributing to OSM

Too much land, too few mappers!
● One example: Adirondack Park

– Area: 24300 km² (not quite Belgium-sized)
– Population: <130000

● Need external data sources

Motivation

Example: New York City recreational lands

Step 1: Scarf down all the data
Can we make sense of the list?

 exec pdftohtml open_rec_areas.pdf

Looking at the result, we can extract this mess:
<a href="http://www1.nyc.gov/assets/dep/downloads/pdf/recreation/area-maps/

Roundtop_Mountain.pdf">Roundtop Mountain

Hunter
 Gillespie Rd.
 3A
 Y

Y
 N
 Y
 Y
 N

 330

Horrible looking HTML, but tdom can surely parse it.

A few hours later: there’s a script to download the list and all the
maps and tag them with metadata.

Step 2: Make sense of PDF maps
(This was actually the first step… the alternative would have been a

Freedom of Information demand!)

Would be extremely challenging to georeference the PDF maps for
tracing. (Too little context).

Maybe they were printed from ArcGIS? Let’s see if they’re GeoPDF.
A command line tool from GDAL (Geospatial Data Abstraction Library)
will inspect them:

$ ogrinfo pdfs/Roundtop_Mountain.pdf

(drum roll please...)

Step 2: Make sense of PDF maps
Yes, GDAL can post these as GeoPDF:
$ ogrinfo pdfs/Roundtop_Mountain.pdf
Metadata:
 CREATION_DATE=D:20160428103334-05
 CREATOR=Esri ArcGIS
1: Other_2
2: Layers_Other
3: Layers_Labels_100_Ft_Elevation_Contours_-_Default
4: Layers_PAA
5: Layers_Roads
6: Layers_Streams
7: Layers_Rivers__Ponds__Lakes__and_Reservoirs
8: Layers_100_Ft_Elevation_Contours
9: Layers_Buildings_EOH

No Freedom of Information demand needed! (Whew!)

Most of these layer names
make sense in terms of

map features.

‘PAA’ turns out to be
‘Public Access Area,’
which is the boundary
we want.

Step 3: Get the map data where we can work with it.
PostgreSQL.

● Much of the existing OpenStreetMap infrastructure already uses it.
● Very strong, GDAL-based, functions and index infrastructure for

dealing with geospatial data.
● SpatiaLite (at least when I did this project) not nearly as well

developed.

So, one at a time, we pour an individual map into a PostgreSQL table:
exec ogr2ogr -append -t_srs EPSG:3857 -f PostgreSQL \
 PG:dbname=gis $fileName \
 -nln intake -nlt MULTILINESTRING \
 Layers_PAA

Step 4: Whoops! Topology!
● Input data are just boundary lines, not polygons.
● Lines broken into short segments
● Some lines look like noisy GPS tracks of someone walking a

boundary
● Some adjacent parcels overlap
● And so on…

Tcl doesn’t have computational geometry facilities to clean this up.

Tcl doesn’t need computational geometry facilities to clean this up.

Do it in PostgreSQL, command it with TDBC.

A couple of pages of Tcl (took a few days to design) take care of it.

Step 5: Review and conflation
This is the hard part – requiring human analysis.

Needs an editor for OSM data.

Andrey Shadura (Andrew Shadoura) wrote one it Tcl as a GSoC project
● No longer maintained
● An OSM editor is actually a huge ecosystem. Better to use an

existing one.

Several OSM editors support an HTTP-based API to command them.

The http and tls packages are already in the mix.

So, dump the data into XML (using an external ogr2osm.py program),
and command an OSM editor to import it as a new layer, then do the
rest by hand in the editor.

Fine point – better management of conflation
For a big, complex import, (the New York City recreation data wasn’t

that big), developed a Tk GUI for managing conflation.

Select an object – loads it into the editor
and downloads the surrounding region
from OSM

Creates an additional layer with differences
between the selected object and the best
matching object in current data
Chooses keyword=value tags to apply to
the selected object

Other actions – visit the area’s web site,
apply the keyword=value tags to the object,
copy the tags to the clipboard,
mark the object as ‘done’ in the database,
end the session.

Another project: render North American
numbered highways

● 4 or more numbering
systems overlaid

● Sign shape is important
● Many route concurrences

● Tcl script to handle data
changes, generate SVG
graphics.

● Concurrency sets calculated
at render time in horrible
PostgreSQL query.

● Serviceable for me, much
work remains to deploy at
scale

https://github.com/kennykb/osm-shields

https://github.com/kennykb/osm-shields

Whither Tcl/Tk?
Tcl/Tk has played a tiny role in all this.

No more than a couple of thousand lines of code in any import project.

All glue – it doesn’t really do much itself, it orchestrates the big
applications that do the heavy lifting.

We won’t rule the world this way!

But isn’t this what Tcl/Tk is for? It’s very, very sticky glue, and good at
connecting things together.

Thank you!

