

The Httpd Module and
Toadhttpd

Presented at

The 25th Annual Annual Tcl Developer’s Conference
(Tcl‘2018)

Houston, TX

October 15-19, 2018  

Sean Deely Woods
Senior Developer

Test and Evaluation Solutions, LLC
400 Holiday Court

Suite 204
Warrenton, VA 20185

Email: yoda@etoyoc.com
Website: http://www.etoyoc.com

Abstract
This paper explores the internals of the new Httpd module in tcllib. It will explain

the development path from the original Tclhttpd, and why objects, coroutines, and the
demands of ever more complex web applications drove this new approach. The paper
will also explore the development of the httpd module into a full fledged web server,
Toadhttpd. The paper will also explore embedding the httpd module into an existing
application (the Integrated Recoverability model) as a documentation viewer. The
paper will also outline how the httpd module will be used in upcoming projects as a
supercomputing job dispatch hub.

mailto:yoda@etoyoc.com
http://www.etoyoc.com
mailto:yoda@etoyoc.com
http://www.etoyoc.com

Introduction
For clarity, this paper discusses two different

projects:

At it’s simplest, the Httpd 4.0 module can be
used internally by any program which has access
to Tcllib:

#	Simple	Server	with	Httpd	
package	require	httpd	4.0	
::httpd::server	create	HTTPD	\	
			port	8015	doc_root	~/htdocs	
HTTPD	start	

Httpd 4.0 and Toadhttpd started life as version
4.0 or the venerable Tclhttpd. Influenced by the
likes of HereTcl and Wibble, I wanted to bring
coroutines and TclOO into Tclhttpd. I succeed-
ed… in making a third coroutine/TclOO based
web server.

Trying to reconcile the new coroutine and
TclOO architecture with the old namespace and
virtual host interpreter approach was impossible.
And because the first thing most application writ-
ers had to do was patch the Tclhttpd internals,
trying to devise a migration path from existing
Tclhttpd apps was going to be fruitless.

What helpful concepts I could steal from the old
Tclhttpd, I did steal. Document Templates (.tml
files) work exactly the same way in Httpd 4.0 as
they work in Tclhttpd. And actually, if templates
don’t require too much in the way access to the
old Tclhttpd internals, most content will port
straight from the old server to the new.

Application direct Urls in Httpd 4.0 are slightly
more complicated, but in my defense, they really
should have been this complicated all along.

Tclhttpd’s attempts to hide complexities led to
even more complexities. There were magic vari-
ables that had to be set if you were not returning a
content type other than HTML. There was a

magic command to hint to the server that your
page wanted to do a 3xx redirect. A magic com-
mand told the client not to cache the page. None
of them got to the heart of the matter: most web
applications need access to the incoming headers
from the request and control of the outgoing
headers of the reply. At the same time, not all in-
coming forms map neatly to a key/value list suit-
able for the arguments of a Tcl proc.

To contrast the two approaches, let me pull ex-
amples directly from Chapter 18 of Brent Welch’s
Practical Programming in Tcl/Tk:

#	Application	Direct	URL	-	Httpd	3.5.x	
Direct_Url	/demo	Demo	
Direct_Url	/faces	Faces	
proc	Demo	{}	{ 
		return	“	
<html><head><title>Demo	page</title></head>	
<body><h1>Demo	page</h1> 
What	time	is	it? 
<form	action=/demo/echo> 
Data:	<input	type=text	name=data> 

 
<input	type=submit	name=echo	value=’Echo	Data’>	
</form> 
</body></html>"		
}	

proc	Demo/time	{{format	"%H:%M:%S"}}	{		
		return	\	
				[clock	format	[clock	seconds]	\	
					-format	$format]		
}	
proc	Demo/echo	{args}	{ 
		#	Compute	a	page	that	echos	the	query	data		
		set	html	“<head><title>Echo</title></head>\n"	
		append	html	"<body><table>\n" 
		foreach	{name	value}	$args	{		
				append	html	\	
					”<tr><td>$name</td><td>$value</td></tr>\n"		
		}		
		append	html	"</tr></table>\n"		
		return	$html	
}	
proc	Faces/byemail	{email}	{		
		global	Faces/byemail 
		filename	[Faces_ByEmail	$email] 
		set	Faces/byemail	[Mtype	$filename]	
		set	in	[open	$filename] 
		fconfigure	$in	-translation	binary		
		set	X			[read	$in] 
		close	$in 
		return	$X		
}	

Httpd 4.0 A module for Tcllib which
implements an HTTP listener API.
Intended for embedding in
existing applications as well as
running tests that require an HTTP
or SCGI listener.

Toadhttpd A fully developed web server
which uses Httpd as its core.
Intended as a replacement for
Tclhttpd

Now I present the the equivilent code in Httpd
4.0:
#	Application	Direct	URL	-	Httpd	4.0	

#	1)	Note	that	the	serve	is	an	object	
::httpd::server	create	SERVER	port	8015	
#	Stock	server	doesn’t	have	a	dispatch		
#	implementation,	this	plugin	provides	a	simple	
#	one	
SERVER	plugin	\	
		dispatch	::httpd::plugin.dict_dispatch	
SERVER	start	

SERVER	uri	direct	*	demo	{}	{	
		my	puts	“	
<html><head><title>Demo	page</title></head>	
<body><h1>Demo	page</h1> 
What	time	is	it? 
<form	action=/demo/echo> 
Data:	<input	type=text	name=data> 

 
<input	type=submit	name=echo	value=’Echo	Data’>	
</form> 
</body></html>"	
}	

SERVER	uri	direct	*	demo/time	{}	{	
		set	form	[my	FormData]	
		if	{[dict	exists	$form	format]}	{		
				set	fmt	[dict	get	$form	format]	
		}	else	{	
				set	fmt	"%H:%M:%S"	
		}	
		my	reply	Content-Type	Text/Plain	
		my	variable	reply_body	
		set	reply_body	\	
				[clock	format	[clock	seconds]	\	
					-format	$fmt]	
}	

SERVER	uri	direct	*	demo/echo	{}	{	
		#	Compute	a	page	that	echos	the	query	data		
		my	puts	“<head><title>Echo</title></head>"	
		my	puts	"<body><table>" 
		foreach	{name	value}	[my	FormData]	{		
				my	puts	\	
						”<tr><td>$name</td><td>$value</td></tr>”		
		}		
		my	puts	“</tr></table>”	
}	

SERVER	uri	direct	*	faces/byemail	{	
		superclass	::httpd::content.file	
}	{ 
		my	variable	reply_file	
		set	email	[dict	getnull	[my	FormData]	email]		
		set	reply_file	[Faces_ByEmail	$email]	
		my	reply	set	Content-Type	\	
						[::fileutil::magic::filetype	$reply_file]	
}	

The first major change is that in Httpd 4.0, the
server is an object instead of an interpreter. This
allows a process to support more than one server
listening on more than one port at a time. And it
allows each of those ports to be bound to a differ-
ent set of rules.

The default server ships with an empty dispatch
method. It is assumed that a user of Httpd will be
providing one of their own. Tcllib provides a
plug-in called httpd::plugin.dict_dispatch which
implements a dict based dispatch system. That
plugin provides a method ensemble uri which
includes a method uri	direct to attach a method
body to a URI pattern.

The first argument to uri	direct is the pattern
for the host name, or * for any host name. The
second is the pattern for the REQUEST_PATH.
Note that the leading slashes on paths will be re-
moved. The third argument is a dict that will be
passed to the server’s dispatching system in order
to tell it how to reply to this request. The final
argument is the body of a method that will actual-
ly generate the reply.

Behind the scenes, the uri	direct command cre-
ates a class with a unique name for every uri pat-
tern registered with the command. That body ends
up as the content method of that custom class.

If the field superclass is given, any classes list-
ed will be fed to a superclass statement in the
newly formed class. You will note that in the
Httpd 4.0 example, the faces/byemail url inherited
from the httpd::content.file class. This is because
the httpd::content.file class has a dispatcher that
is more appropriate for returning streams of bina-
ry data. If the reply_file variable is set, it’s dis-
patch method knows to transmit the designated
file. We’ll get into writing your own dispatch
method a little later in this paper.

Socket programming with
Coroutines

To understand what drove the implementation
of Httpd 4.0, you have to understand implement-
ing socket programming using coroutines. Corou-
tines are made possible by the Non-Recursive
Engine (NRE) that came out with Tcl 8.6. Quoting
Tip 328:

…a coroutine allows a command to sus-
pend its current execution and return (or
yield) a value to its caller. The caller may
later resume the coroutine at the point
where it previously yielded, allowing it to
perform further work and potentially yield
further values.

If you have written socket programming in ver-
sions of Tcl prior to 8.6, you have probably been
using a state machine. You bind a command to
intercept new bits of data coming in from a

stream. But either you change that binding as the
data exchange evolves, or you have some internal
state tracked by socket that explains to your proc
where you actually are in the exchange.

I have prepared a simple example of this style.
The socket command invokes connectProc with
each new connection. connectProc sets up the pa-
rameters for our stream, and binds incoming
packets to our streamProc command.

The first line of the protocol is a user’s name.
The second line is some sort of authentication. All
lines after that are an echo of the incoming line
with “USER Said:” prepended to the output.

Our state is implemented as a dict value stored
within a global array. For brevity we are doing
without the normal error handling and other em-
bellishments that typically adorn well written
socket code.

#	State	Machine	Socket	Example	
proc	connectProc	{	
		chan	clientip	client	port	
}	{		
		chan	configure	$sock	\	
				-blocking	0	\	
				-translation	{auto	crlf}	\	
				-buffering	line	
		dict	set	::state($sock)	\	
				[dict	create	state	open]	
		chan	event	$sock	readable	\	
			[list	streamProc	$sock]	
}	
proc	streamProc	sock	{	
		uplevel	#0	::state($sock)	state	
		set	line	[chan	gets	$sock]	
		switch	[dict	get	$state	state]	{	
				open	{	
						dict	set	state	state	pass	
						dict	set	state	user	$line	
				}	
				pass	{	
						if	{$line	!=	“password”}	{	
								puts	$sock	“Go	away”	
								close	$sock	
						}	
						dict	set	state	state	auth	
				}	
				auth	{	
						set	user	[dict	get	$state	user]	
						puts	$sock	“$user	Said:	$line”	
				}	
		}	
}	

socket	-server	connectProc	666	

In the next example I have implemented the
same protocol using a coroutine. It starts off the
same way with socket command invoking connect-
Proc with each new connection. After configuring
our stream’s parameters we use the coroutine
command to produce a coroutine for us. We tell
that coroutine to call the streamProc command.

Next we bind readable events to the coroutine we
have just created.

Inside the body of streamProc you will see mul-
tiple calls to the yield command. Those are the
points where the coroutine gives up control, and
waits for an event to happen.

Note that we don’t have any kind of global state
in this implementation. We create the variable
$user and can utilize it further along in our script,
as if this were a standard proc and we weren’t
being constantly interrupted by the need for more
input.

Also note that we can terminate the coroutine at
any point by invoking return.

#	Coroutine	Socket	Example	
proc	connectProc	{	
		chan	clientip	client	port	
}	{		
		chan	configure	$sock	\	
				-blocking	0	\	
				-translation	{auto	crlf}	\	
				-buffering	line	
		coroutine	::coro#$sock	\	
				[list	streamProc	$sock]	
		chan	event	$sock	readable	\	
				::coro#$sock	
}	
proc	streamProc	sock	{	
		yield	[info	coroutine]	
		set	user	[chan	gets	$sock]	
		yield	
		set	pass	[chan	gets	$sock]	
		if	{$line	!=	“password”}	{	
				puts	$sock	“Go	away”	
				catch	{close	$sock}	
				return	
		}	
		while	{[chan	gets	$sock	line]>=0}	{	
				puts	$sock	“$user	Said:	$line”	
				yield	
		}	
		catch	{close	$sock}	
}	

socket	-server	connectProc	666	

httpd::server
The server class, httpd::server, brokers connec-

tions, creates coroutines, and then hands off the
transaction to httpd::reply instances to finish pro-
cessing. But along the way there are plenty of op-
portunities to customize that process. But before
we get to that, I have to take a few minutes out to
discuss safety.
Safely Implementing HTTP

Web servers implement the Hypertext Transfer
Protocol (HTTP), as outlined by a variety of
RFCs, but the one most people can agree on is

RFC 2068. Or at least that what I’m agreeing on,
and to quote Andrew Tanenbaum:

“the nice thing about standards is
there are so many to choose from.”

HTTP requests start as a single line, followed
by MIME headers, and then possibly followed by
a stream of data.
GET	index.html	HTTP/1.1	
Host:	www.example.com	

HTTP replies start as a single line, followed by
MIME headers, and then possibly followed by a
stream of data.
HTTP/1.1	200	OK	
Date:	Mon,	23	May	2005	22:38:34	GMT	
Content-Type:	text/html;	charset=UTF-8	
Content-Length:	138	
Last-Modified:	Wed,	08	Jan	2003	23:11:55	GMT	
Server:	Apache/1.3.3.7	(Unix)	
ETag:	"3f80f-1b6-3e1cb03b"	
Accept-Ranges:	bytes	
Connection:	close	

<html>	
<head>	
		<title>An	Example	Page</title>	
</head>	
<body>	
		Hello	World,	this	is	a	very	simple	HTML	
document.	
</body>	
</html>	

The HTTP protocol itself is fairly straightfor-
ward. The problem is that attack bots exploit
pedantic interpretations of the standard. Attacks
range from the simple to the devious. The sim-
plest is issuing a GET, with no mime headers nor
CR/LF terminator. Your more advanced bots
make earnest attempts at a stack smash by pack-
ing a request with a stream of random data but no
newline in hopes that your parser eventually seg-
faults. The truly devious tactic is to take so long
to finish sending the request that the server is ei-
ther denying services to other requests or gets
confused and allows the attacker to peer inside of
other requests.

To shield the server against attacks of these
sorts, the Httpd module employs a new feature
added to the coroutine module in tcllib called
coroutine::util::gets_safety. This is designed to
be called by a coroutine and replace a naive gets
call with one which terminates if the incoming
line is getting unreasonably large or of the client
seems to be taking entirely too long to get to the
point.

HTTP replies start off life as a call from the
binding on socket	-server to the server’s public
connect method: 

method	connect	{sock	ip	port}	{	
		###	
		#	Consult	our	list	of	blocked	addresses	
		###	
		if	{[my	Validate_Connection	$sock	$ip]}	{	
				catch	{close	$sock}	
				return	
		}	
		set	uuid	[my	Uuid_Generate]	
		#	Create	a	coroutine	
		set	coro	[coroutine	::httpd::coro::$uuid	\	
				{*}[namespace	code	\	
							[list	my	Connect	$uuid	$sock	$ip]]]	
		#	Bind	that	coroutine	to	the	next	readable	event	
		chan	event	$sock	readable	$coro	
}	

When the socket is readable, the event system
calls the coroutine, and the coroutine picks up
where it left off, inside of the Connect private
method of the server.
method	Connect	{uuid	sock	ip}	{	
		#	Yield	immediately	on	creation	
		yield	[info	coroutine]	
		try	{	
				#	Unbind	the	readable	event	that	triggered	me	
				chan	event	$sock	readable	{}	
				chan	configure	$sock	-blocking	0	\	
				-translation	{auto	crlf}	-buffering	line	
				#	Pull	the	request	line	or	die	trying	
				set	readCount	[::coroutine::util::gets_safety\	
						$sock	4096	http_request]	
				#	Pull	the	mime	headers	or	die	trying	
				set	mimetxt	[my	HttpHeaders	$sock]	
				dict	set	query	UUID	$uuid	
				dict	set	query	mimetxt	$mimetxt	
				#	Build	the	server	fields	of	the	request	
				dict	set	query	http	\	
					[my	ServerHeaders	$ip	$http_request	$mimetxt]	
				#	Shim	for	plugins	to	manipulate	the	request	
				my	Headers_Process	query	
				#	Generate	a	reply	data	structure	
				set	reply	[my	dispatch	$query]	
		}	on	error	{err	errdat}	{	
				#	Log	and	generate	a	400	Bad	request	
				return	
		}	
		if	{[dict	size	$reply]==0}	{	
				#	An	empty	data	structure	generates	a	
				#	404	Not	Found	error.	But	we	will	generate	
				#	that	page	as	a	normal	request	
				set	reply	$query	
				my	log	BadLocation	$uuid	$query	
				dict	set	reply	http	HTTP_STATUS	\	
						{404	Not	Found}	
				dict	set	reply	template	notfound	
				dict	set	reply	mixin	\	
						reply	::httpd::content.template	
		}	
		#	Create	an	object	to	process	the	rest	
		#	of	the	reply	
		set	pageobj	[::httpd::reply	create	\	
					::httpd::object::$uuid	[self]]	
		#	Pass	control	of	the	rest	of	this	reply	
		#	to	that	object	
		tailcall	$pageobj	dispatch	$sock	$reply	
}	

http://www.example.com

The HttpHeaders method is implemented in a
meta class for the module and looks like this on
the inside:
method	HttpHeaders	{sock}	{	
		set	result	{}	
		set	LIMIT	8192	
		chan	configure	$sock	-blocking	0	\	
				-translation	{auto	crlf}	-buffering	line	
		while	1	{	
				set	readCount	\	
						[::coroutine::util::gets_safety	\	
							$sock	$LIMIT	line]	
				if	{$readCount<=0}	break	
				append	result	$line	\n	
				if	{[string	length	$result]	>	$LIMIT}	{	
						error	{Headers	too	large}	
				}	
		}	
		return	$result	
}	

Next we invoke the server’s dispatch method
after the MIME headers have been read and en-
coded. If a match is found, this method will return
a dict. If none is found, it will return an empty
value, which will allow the object to consult reg-
istered plugins for data. (We show how to imple-
ment the dispatch method later in the Toadhttpd/
Httpd Plugins section.)

httpd::reply
Any further explanation of the Httpd 4.0’s inner

workings will require stripping away the syntactic
sugar of uri	direct.

In the example in the next column, I have
created an additional URI. Instead of using uri	
direct, I do things the hard way by creating my
own class and registering it via uri	add.

The mixin directive tells the server object which
behaviors to mix into the object prior to invoking
the object’s dispatch method.

Mixins for httpd::reply not need to inherit any
other classes. You can feel free to create a hierar-
chy of ancestry with your content generators and
know that you won’t get tangled with the hierar-
chy of the Httpd module’s classes. Also note that
mixins are assigned slots, which allows multiple
classes to be mixed in orthogonally. If you have
one class that implements site styles, that class
can use a separate slot from the class designated
to generate the content.  

#	Example	-	Manually	performing	the	
#	steps	in	uri	direct	
oo::class	create	mydemo.clay	{	
		method	content	{}	{ 
				#	Compute	a	page	that	echos	the	
				#	query	data		
				set	title	[my	clay	get	title]	
				my	puts	“<head><title>$title</title></head>”	
				my	puts	"<body><table>" 
				foreach	{name	value}	[my	FormData]	{		
						my	puts	\	
							”<tr><td>$name</td><td>$value</td></tr>”		
				}	
				#	Also	expose	data	from	the	clay		
				#	data	structure	
				foreach	{name	value}	[my	clay	get	content/]	{	
						set	tvalue	[subst	$value]	
						my	puts	\	
								”<tr><td>$name</td><td>$tvalue</td></tr>”	
						}	
				}	
				my	puts	“</tr></table>”	
		}	
}	
#	Use	uri	add	to	associate	the	class	with	the	uri	
SERVER	uri	add	*	demo/clay	{	
		mixin	{content	mydemo.echo}	
		title	{Clay	is	so	cool}	
		content/	{	
				name	{Example}	
				uuid	{[uuid::uuid	generate]}	
		}	
}	
#	Use	uri	add	to	associate	the	same	class	
#	with	a	different	uri	with	different	
#	settings	
SERVER	uri	add	*	demo/claymore	{	
		mixin	{content	mydemo.echo}	
		title	{Clay	is	so	much	cooler}	
		content/	{	
				name	{A	different	example}	
				uuid	{[uuid::uuid	generate]}	
		}	
}	

method content
The http::reply class expects the developer to

provide their own content method, implemented in
another class that will be mixed into the reply
object at runtime.

Unlike a proc registered with Tclhttpd’s
Direct_Url system, the content method does not
return a value. Instead it populates an internal
variable reply_body. For convenience,
httpd::reply provides a puts method which
appends the arguments provided to the
reply_body.

You will also notice the content does not take
any arguments. Instead of mapping incoming
form data to arguments, Httpd 4.0 exposes them
as a dict that is available on demand. Also avail-
able are the parameters fed into the uri	add or uri	
direct method, as well as data discovered during
the dispatch process. That information and the

raw MIME headers are exposed by the clay
method. I won’t explain clay here, but there is a
companion paper to this one where you can read
more it. (Clay: A Minimalist Toolkit for Sculpting
TclOO.) For now just think of it as an access func-
tion to a private dict.
method reply

The reply method ensemble allows the applica-
tion to modify the headers of the outgoing reply.
A reserved reply field Status can be used to con-
note that the page is returning a reply code that is
not the standard 200 OK. For the default imple-
mentation of httpd::reply the Content-Size field is
automatically computed, and the Content-Type is
assumed to be utf-8 encoded HTML. If you re-
place the dispatch method via a mixin, you will
have to manage the headers yourself.

When you are ready to output your content the
result	reply method while collect the information
stored in the reply dict and output properly for-
matted MIME headers.
method dispatch

Writing a single page at a time of dynamic con-
tent is sufficient for simple projects. However,
Httpd recognizes that the world is a complex
place and that many web applications do not fit
into that simplistic model. As such, the dispatch
method represents the means to take complete
control of the request and response. This level of
control is needed for:

• Proxies
• Websockets
• Media streaming
• Chunked Encoding
• HTTP/2
dispatch takes two arguments: socket and datas-

tate. socket is an standard Tcl channel, as created
by the socket command. datastate is a dictionary
which feeds the reply object configuration infor-
mation. The data structure itself is populated by
the server’s own dispatch method, which may be
influenced by plugins loaded into the server via
the plugin method. The only reserved keys for
Httpd module internals are:  

#	Method	dispatch	from	httpd::reply	
method	dispatch	{newsock	datastate}	{	
		my	variable	chan	request	
		try	{	
				set	chan	$newsock	
				chan	event	$chan	readable	{}	
				chan	configure	$chan	\	
						-translation	{auto	crlf}	-buffering	line	
				my	clay	mixinmap	\	
						{*}[dict	getnull	$datastate	mixin]	
				my	clay	delegate	\	
						{*}[dict	getnull	$datastate	delegate]	
				my	reset	
				set	request	[my	clay	get	dict/	request]	
				foreach	{f	v}	$datastate	{	
						if	{[string	index	$f	end]	eq	"/"}	{	
								my	clay	merge	$f	$v	
						}	else	{	
								my	clay	set	$f	$v	
						}	
						if	{$f	eq	"http"}	{	
								foreach	{ff	vf}	$v	{	
										dict	set	request	$ff	$vf	
								}	
						}	
				}	
				my	Session_Load	
				my	Log_Dispatched	
				my	Dispatch	
		}	on	error	{err	errdat}	{	
				my	error	500	$err	\	
						[dict	get	$errdat	-errorinfo]	
				my	DoOutput	
		}	
}	

method Dispatch
In practice I have found that most of the pro-

forma work that the public dispatch method does
is sufficient for all needs, and that I can confine
all of the application specific code to a private
method Dispatch which mixins can overwrite.

Generating a block of HTML content on the fly
has a simple Dispatch method:
#	Stock	Dispatch	from	httpd::reply	
method	Dispatch	{}	{	
		#	Invoke	the	URL	implementation.	
		my	content	
		my	DoOutput	
}	

Serving a file base URL is slightly more com-
plicated, because I could be delivering dynamical-

delegate Key/Value list of slots and objects or
commands to delegate this slots to

http Key/Value list of MIME headers from the
request mapped to SCGI rules

mimetxt The raw MIME headers for the request

mixin Key/Value list of slots and mixed in
classes

UUID A GUUID unique to this web reply

ly generated HTML (for directory listings, Mark-
down, or Template files), or it could be transmit-
ting binary files:
method	Dispatch	{}	{	
		my	variable	reply_body	reply_file	reply_chan	
		my	variable	chan	
		try	{	
				my	reset	
				#	Invoke	the	URL	implementation.	
				my	content	
		}	on	error	{err	errdat}	{	
				my	error	500	$err	\	
						[dict	get	$errdat	-errorinfo]	
				tailcall	my	DoOutput	
		}	
		if	{$chan	eq	{}}	return	
		my	wait	writable	$chan	
		if	{![info	exists	reply_file]}	{	
				tailcall	my	DoOutput	
		}	
		try	{	
				chan	configure	$chan	\	
						-translation	{binary	binary}	
				###	
				#	Return	a	stream	of	data	from	a	file	
				###	
				set	size	[file	size	$reply_file]	
				my	reply	set	Content-Length	$size	
				append	result	[my	reply	output]	\n	
				chan	puts	-nonewline	$chan	$result	
				set	reply_chan	[open	$reply_file	r]	
				my	log	SendReply	[list	length	$size]	
				###	
				#	Output	the	file	contents.	With	no	-size	
				#	flag,	channel	will	copy	until	EOF	
				###	
				chan	configure	$reply_chan	\	
						-translation	{binary	binary}	\	
						-buffersize	4096	-buffering	full	-blocking	0	
				my	ChannelCopy	$reply_chan	$chan	-chunk	4096	
		}	finally	{	
				my	TransferComplete	$reply_chan	$chan	
		}	

And then you get the really complicated cases
where we are proxying data:
#	Dispatch	method	from	httpd::content.proxy	
method	Dispatch	{}	{	
		my	variable	sock	chan	
		if	{[catch	{my	proxy_channel}	sock	errdat]}	{	
				my	error	504	\	
						{Service	Temporarily	Unavailable}	\	
						[dict	get	$errdat	-errorinfo]	
				tailcall	my	DoOutput	
		}	
		if	{$sock	eq	{}}	{	
				my	error	404	{Not	Found}	
				tailcall	my	DoOutput	
		}	
		chan	event	$sock	writable	[info	coroutine]	
		yield	
		try	{	
				my	ProxyRequest	$chan	$sock	
				my	ProxyReply			$sock	$chan	
		}	finally	{	
				my	TransferComplete	$chan	$sock	
		}	
}	

And know that internally the ProxyRequest and
ProxyReply are doing further actions. Because we

are in a coroutine, we can just invoke them as a
subroutine. Those methods can yield every bit as
well as the Dispatch method. When they are fin-
ished yielding, and either return or reach the end
of the body, control will return here.

I like coroutines because I can actually read the
code in execution order. If you’ve ever had to de-
bug state based socket code, it can be a real head
scratcher sometimes.

Toadhttpd
Up until now everything discussed has been

about the Httpd module. While it’s nice and pretty
usable on it’s own, it lacks many of the finishes
that would make it suitable to stand up as a public
webserver.

Enter Toadhttpd. Toadhttpd builds on the Httpd
module and adds all of the implementation fea-
tures that a public facing web server actually
needs. Logging. Session control. Caching. Plug-
ins to implement your own micro social network.
(Ok that one is still in development, but it’s com-
ing along.)
Getting Toadhttpd

Toadhttpd hasn’t grown large enough to merit a
binary distribution as of yet. It is distributed in
source form in a fossil repository. So step one is
cloning and unpacking the code.
#	Clone	and	upack	the	fossil	sources	
#	Feel	free	to	adjust	the	paths	to	your	liking	
mkdir	-p	~/tcl/fossil/	
fossil	clone	https://chiselapp.com/user/hypnotoad/
repository/toadhttpd	~/tcl/fossil/toadhttpd.fos	
mkdir	-p	~/tcl/sandbox/toadhttpd	
cd	~/tcl/sandbox/toadhttpd	
fossil	open	~/tcl/fossil/toadhttpd.fos	

The fossil repo contains a tcl based installer,
and it is intended that you work from an installed
version of the code rather than operate directly
from the sources. Several if the modules do not
version control their finished form, so the installer
actually assembles them for you.

It’s also intended that every server running
Toadhttpd has an independent copy of all of the
source code modules. In this way, you can evalu-
ated newer versions before switching them over to
production. And you can also keep an old reliable
site up until the heat death of the Universe with-
out ever having to update it.
#	Make	a	directory	to	host	your	content	from	
>	tclsh	~/tcl/sandbox/toadhttpd/make.tcl	\	
			install	~/www/mysite	

~/www/mysite now contains a complete instal-
lation of Toadhttpd.  

cd	~/www/mysite	
ls	
htdocs																httpd.tcl								log																
modules																plugin																var	

To run the website, simply run the httpd.tcl file
inside of your friendly neighborhood Tcl inter-
preter.
tclsh	httpd.tcl		

The default behavior is to host the htdocs/ di-
rectory adjacent to the httpd.tcl file as static con-
tent.

For those if you pining for the heady days of
Tclhttpd, the stock Toadhttpd understands
Tclhttpd style substitution files:
cat	htdocs/hello.tml	
[my	html_header	{Hello	World!}]	
Your	Server	is	running.	
<p>	
The	time	is	now	[clock	format	[clock	seconds]]	
[my	html_footer]	

 You’ll note that inside some of the angle brack-
et is [my]. Yes, the substitution is being performed
inside of the httpd::reply object. Your template
has access to all of the reply’s methods. If you
need to refer to the server, it is delegated as the
<server> method.Toadhttpd also maintains an
sqlite based caching, dispatch, logging, and secu-
rity system. That database handle is delegated as
the <db> method. And just because we are running
inside of an httpd::reply object doesn’t mean it’s
too late to bolt on new behaviors!
[#	Make	this	page	regenerate	every	time	
my	reply	set	Cache-Control	no-cache		
#	Change	the	style	engine	
my	clay	mixinmap	style	::etoyoc::style	
my	html_header	{Hello	World!}]	
Your	Server	is	running.	
<p>	
The	time	is	now	[clock	format	[clock	seconds]].	
<p>	
This	page	has	been	accessed	[
#Calculate	the	page	hits	
set	URI	[my	request	get	REQUEST_URI]	
set	count	[my	<db>	onecolumn	{	
select	count(rowid)	from	log.log	where		
REQUEST_URI=:URI}]	
[my	html_footer]	

Another neat feature is being able to do your
own conditional redirects:
[my	html_header	{My	Happy	File}]	
[set	URL	hello	
if	{[my	request	get	REQUEST_URI]	eq	$URL}	return	
my	reply	set	LOCATION	/$URL	
my	reply	set	Status	301	
return	“	
The	file	your	were	looking	for		
[my	request	get	REQUEST_URI]		
has	moved.	You	will	be	redirected	to:	
$URL	momentarily”]	
<p>	
The	time	is	now	[clock	format	[clock	seconds]]	
[my	html_footer]	

And when you want to access your logs, you
can do so via your favorite sqlite implementation:
>	ls	log/	
cache.sqlite								log.sqlite	
>	sqlite3	log/log.sqlite		
SQLite	version	3.24.0	2018-06-04	19:24:41	
Enter	".help"	for	usage	hints.	
sqlite>	.tables	
blackhole										debug														log																
session											
blackhole_journal		journal												log_info											
session_info						
sqlite>	.schema	log	
CREATE	TABLE	log	(
time		'UNIXTIME'	DEFAULT	(now()),	
REMOTE_ADDR		'IPADDR',	
REMOTE_HOST		'HOSTNAME',	
REFERER		'URI',	
USER_AGENT		'STRING',	
HTTP_HOST		'HOSTNAME',	
REQUEST_URI		'URI',	
SESSION		'UUID'	REFERENCES	session	
DEFAULT(guuid()),	
COOKIE		'STRING',	
rowid	INTEGER	PRIMARY	KEY	AUTOINCREMENT,	
uuid	STRING	UNIQUE	
);	
sqlite>	select	*	from	log;	
1537370493|127.0.0.1|127.0.0.1|http://localhost:
8015/|Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	
10_13_6)	AppleWebKit/605.1.15	(KHTML,	like	Gecko)	
Version/12.0	Safari/605.1.15|localhost:8015|/hel-
lo.tml|||5|d71a0fb6-0208-43f5-b468-58c797b3c901	
sqlite>		

Configuring Toadhttpd
The server looks for a file name config.tcl adja-

cent to httpd.tcl as a place for the developer to
add configuration and customization. The script is
run inside of the httpd::server object’s start
method. The script can exercise the server’s
methods. Here is a snippet from my configuration
for www.etoyoc.com:
#	Manage	configurable	options	
my	clay	set	doc_ttl	900	
my	clay	set	server/	style	::etoyoc::style	
set	srvhere	[file	dirname	\	
			[file	normalize	[info	script]]]	
#	Load	plugins	
package	require	toadhttpd::clique	
package	require	toadhttpd::fossil	
package	require	toadhttpd::trivia	
package	require	toadhttpd::bootstrap	
package	require	toadhttpd::facade	

#	Activate	plugins	
my	plugin	clique	
my	plugin	bootstrap	
my	plugin	facade	

#	I	have	elected	to	break	my	config	file	up	
#	into	site	based	chunks	
foreach	directory	[glob	$srvhere/sites/*]	{	
		if	{[file	exists	$directory/config.tcl]}	{	
				source	$directory/config.tcl	
		}	
}	

http://www.etoyoc.com

#	If	someone	asks	for	/login,	we	know	they		
#	probably	meant	my	folk	fest	website’s	login	
my	uri	add	%	/login	{	
		reply	{content	httpd::content.redirect}	
		LOCATION	/pff/login	
}	

Security Enhancements
Toadhttpd also includes a means to block nefar-

ious IP addresses based on behavior. There is a
class toadhttpd::content.honeypot which can be
used for marking an IP address as a bad actor.

A little later in my file, I have rules to place IPs
in the black list based on URL:
#	Mark	certain	URIs	to	be	caught	by	the	security	
#	model’s	honeypot	
my	uri	add	%	{	
		/ccvv	/admin%	/test/wp-admin%	/wp-login.php%	
		/CGI/Execute	/PhpMyAdmin%	%.php	/manager/html	
		/wls-wsat%		/.DS_Store%	/.git%			
		/.hg%		/.idea%		/.ssh%	/.well-known%			
			%phpunit%		/sftp_config.%	
}	{	
		mixin	{reply	toadhttpd::content.honeypot}	
}	

You’ll note I’m using SQL style glob charac-
ters, because in Toadhttpd, the dispatcher uses the
Sqlite like() function. If any of those URIs are
encountered they will be dealt with by the follow-
ing object:
::clay::define	::toadhttpd::content.honeypot	{	
		method	content	{}	{	
				my	Blackhole	{Security	Honeypot}	
				my	puts	{	
<html><body><h1>You	have	been	blocked</h1></
body></html>	
				}	
		}	
}	

The Blackhole method understands that the re-
questing IP address has done something nasty, and
records a reason as to why. This event is logged in
the blackhole_journal table.

Toadhttpd/Httpd Plugins
Both Toadhttpd and Httpd are extendable with

the same plugin architecture. A plugin is expected
to be a mixin class. The method to activate a plug-
in takes two arguments, the name of the slot and
the name of the class (or classes) to load into that
slot. If the class argument is left off, the server
guesses a name of the pattern: httpd::plugin.slot.

On activation, the server object consults the
class (via clay) to see how the plugin expects to
interact with the server. The following slots in
clay have meaning:  

Several example plugins are distributed with
Tcllib. The simplest is a plugin to implement a
dict based dispatcher:
#	A	rudimentary	plugin	that	dispatches	URLs	from	
#	a	dict	data	structure	
::clay::define	::httpd::plugin.dict_dispatch	{	
		clay	set	plugin/	load	{	
				my	variable	url_patterns	
				set	url_patterns	{}	
		}	
		clay	set	plugin/	dispatch	{	
				set	reply	[my	Dispatch_Dict	$data]	
				if	{[dict	size	$reply]}	{	
						return	$reply	
				}	
		}	
		#	Implementation	of	the	dispatcher	
		method	Dispatch_Dict	{data}	{	
				my	variable	url_patterns	
				set	vhost	[lindex	[split	\	
						[dict	get	$data	http	HTTP_HOST]	:]	0]	
				set	uri	[dict	get	$data	http	REQUEST_PATH]	
				foreach	{host	hostpat}	$url_patterns	{	
					if	{![string	match	$host	$vhost]}	continue	
					foreach	{pattern	info}	$hostpat	{	
						if	{![string	match	$pattern	$uri]}	continue	
						set	buffer	$data	
						foreach	{f	v}	$info	{	
								dict	set	buffer	$f	$v	
						}	
						return	$buffer	
					}	
				}	
				return	{}	
		}	
}	

 

plugin/ dispatch A script to be inserted into
the server’s dispatch
method

plugin/ load A script to be executed
inside if the plugin method
immediately during
activation.

plugin/ headers A script to insert into the
server’s Headers_Process
method

plugin/ thread A script to insert into the
server’s Thread_start
method. Which is run
during the start method.
Intended to allow the plugin
to kick off one or more
worker threads.

::clay::define	::httpd::plugin.dict_dispatch	{	
		###	
		#	Add	the	URI	ensemble	to	allow	outside	
		#	process	to	add	URI’s	
		###	
		Ensemble	uri::add	{vhosts	uris	info}	{	
				my	variable	url_patterns	
				foreach	vhost	$vhosts	{	
						foreach	pattern	$uris	{	
								set	data	$info	
								if	{![dict	exists	$data	prefix]}	{	
											dict	set	data	prefix	\	
													[my	PrefixNormalize	$pattern]	
								}	
								dict	set	url_patterns	$vhost	\	
										[string	trimleft	$pattern	/]	$data	
						}	
				}	
		}	
		###	
		#	Accept	a	body	of	a	method	as	a	source	of	
		#	dynamic	content,	wrap	that	body	in	a	new	
		#	class,	and	attach	that	class	to	the		
		#	given	vhosts	and	uris	
		###	
		Ensemble	uri::direct	{vhosts	uris	info	body}	{	
				my	variable	url_patterns	
				set	cbody	{}	
				if	{[dict	exists	$info	superclass]}	{	
						append	cbody	\n	\	
							”superclass	{*}[dict	get	$info	superclass]"	
						dict	unset	info	superclass	
				}	
				append	cbody	\n	[list	method	content	{}	$body]	
				set	class	\	
						[namespace	current]::${vhosts}/${patterns}	
				set	class	[string	map	{*	%}	$class]	
				::clay::define	$class	$cbody	
				dict	set	info	mixin	content	$class	
				my	uri	add	$vhosts	$uris	$info	
		}	
}	

Using Httpd in your own
program.

When I wrote the abstract I had grand visions of
rewriting a major chunk of T&E’s task dispatch
system. And while that project is still on the
books, it wasn’t quite ready for prime time. I can
however share how Httpd was used to serve up
help files from within our software.

Essentially, we have a lot of documentation that
is cooked up on the fly from data structures and
other introspection tools. And being the lazy pro-
grammer I am, the simplest way to present that
information is to have the machine crank out
HTML on the fly. The process starts when a user
clicks a menu item that triggers a command called
::docview::dvopen. That command hunts around in
the local OS for how to open a browser. And fi-
nally it creates an instance of httpd, and throws

open it’s port at a localhost URL that it can then
ask the OS to display:
proc	::docview::dvopen	{{page	{}}}	{	
		variable	_server_url	
		::docview::start_server	
		if	{[string	range	$page	0	6]	eq	"help://"}	{	
				set	page	[string	range	$page	7	end]	
		}	
		set	url	${_server_url}/$page	
		global	tcl_platform	
		switch	$tcl_platform(os)	{	
				Darwin	{	
						set	command	[list	open	$url]	
				}	
				{Windows	95}	-	
				{Windows	NT}	{	
						set	command	"[auto_execok	start]	{}	[list	
$url]"	
				}	
				default	{		
					#	A	lot	of	hunting	around	for	name	brand	
					#	browsers	
				}	
		}	
		if	[info	exists	command]	{	
				if	[catch	{eval	exec	$command}	err]	{	
						irmMessageBox	-icon	error	\	
-message	"error	'$err'	with	'$command'"	
				}	
		}	
		puts	“Open	a	browser	to	$url	if	one	hasn’t	
popped	up	already”	
		::docview::ruleIndex	
}	

The code to start the server is:
proc	::docview::start_server	{{page	{}}}	{	
		variable	_server_port	
		variable	_server_url	

		if	{![info	exists	_server_port]}	{	
				set	_server_port	[::nettool::allocate_port	
50050]	
		}	
		if	{[info	commands	::docview::listener]	eq	{}}	{	
			::docview::server	create	::docview::listener	\	
						port	$_server_port	\	
						doc_root	$::docview::docroot	
						set	_server_url	\	
”http://localhost:$_server_port"	
		}	
		puts	"Listening	on	$_server_port"	
		return	$_server_port	
}	

And ::docview::server looks like:
::clay::define	::docview::server	{	
		superclass	::httpd::server	

		method	dispatch	data	{	
				set	reply	$data	
				dict	set	reply	class	::docview::reply	
				dict	set	reply	docroot	[my	cget	doc_root]	
				return	$reply	
		}	
}	

And docview::reply looks like:
::clay::define	::docview::reply	{	
		superclass	::httpd::reply	

		method	content	{}	{	
			set	path				[my	request	get	REQUEST_URI]	

			if	{$path	in	{{}	index	index.html	index.htm}}	{	
					set	path	home	
			}	
			my	puts	[::docview::_direct_page	$path	{}]	
	}	
}	

And ::docview::_direct_path is a nasty interest-
ing set of hacks that digs into the IRM data struc-
tures and bangs out raw HTML code. The same
function also powers an embedded TkHtml based
viewer we use. When we don’t have to do things
like copy and paste. Or actually read the text.

Just like in all of the examples, we have a
server. That server has a dispatch method. That
dispatch method pairs a request with a class that
will respond to it. That response class generates
HTML anyway it knows how.

Conclusions
My goal in this paper was to introduce you to

the power of one of the newer modules in tcllib. I
hope you find this paper useful, but more impor-
tantly I hope you find the module useful.  

Cited Works
Cover and clip-art:
Celtic Stencil Designs CD-ROM and Book
Co Spinhoven
http://store.doverpublications.com/0486996786.html

Tip 328: Coroutines
Miguel Sofer & Neil Madden
https://core.tcl.tk/tips/doc/trunk/tip/328.md

RFC 2068: Hypertext Transfer Protocol -- HTTP/1.1
R. Fielding, J. Gettys, J. Mogul, H. Frysytk, T. Berners-Lee
https://tools.ietf.org/html/rfc2068

RFC 7540: Hypertext Transfer Protocol Version 2 (HTTP/2)
M. Belshe, R. Peon, M. Thomson, Ed.
https://tools.ietf.org/html/rfc7540

TclHttpd Web Server,
Excerpted from Chapter 18 or Practical Programming in Tcl/Tk,
Brent Welch,
https://tcl.tk/software/tclhttpd/tclhttpd.pdf

Clay: A Minimalist Toolkit for Sculpting TclOO
Sean Woods
http://www.etoyoc.com/yoda/papers/tcl2018.Clay_Paper.pdf

Fossil Repositories
Clay: http://fossil.etoyoc.com/fossil/clay

https://chiselapp.com/user/hypnotoad/repository/clay

Taolib: http://fossil.etoyoc.com/fossil/taolib
https://chiselapp.com/user/hypnotoad/repository/taolib

Tcllib: https://core.tcl-lang.org/tcllib

Toadhttpd: http://fossil.etoyoc.com/fossil/toadhttpd
https://chiselapp.com/user/hypnotoad/repository/toadhttpd

http://fossil.etoyoc.com/fossil/clay
https://chiselapp.com/user/hypnotoad/repository/clay
http://fossil.etoyoc.com/fossil/taolib
https://chiselapp.com/user/hypnotoad/repository/taolib
https://core.tcl-lang.org/tcllib
http://fossil.etoyoc.com/fossil/toadhttpd
https://chiselapp.com/user/hypnotoad/repository/toadhttpd
http://store.doverpublications.com/0486996786.html
https://core.tcl.tk/tips/doc/trunk/tip/328.md
https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc7540
https://tcl.tk/software/tclhttpd/tclhttpd.pdf
http://www.etoyoc.com/yoda/papers/tcl2018.Clay_Paper.pdf

