
Experiences with Adopting the Tcl/Tk
Ecosystem in a University Research Lab

Setting

Gunes Koru, Yili Zhang, Urmita Banerjee, Leroy Kim, Clif
Flynt, and Stephen Huntley

Health IT Lab
http://drkoru.us/health-it-lab.html
Department of Information Systems

University of Maryland, Baltimore County

Friday, October 19th, 2018



Outline

I Introduction
I Context

I University
I Lab
I Problem Domain

I Decision Making
I Desktop vs Web Based
I Language and Ecosystem

I Findings and Observations
I Conclusion
I Recommendations



Introduction
I Motivation: Reporting out experiences
I Benefits: Evidence-Based Adoption of Software

Engineering Tools
I Software engineers value evidence
I Nevertheless, projects are under time and budget pressure
I Finishing products and kicking them out the door often

takes priority
I Still, need to take every opportunity to report out to

inform future efforts
I In this case, report our experience of adopting the tools in

Tcl/Tk ecosystem
I Tcl, Tk, Fossil, and sqlite3

I This is a qualitative exploration rather than a quantitative
one



Context: University

I Public Research University Setting
I UMBC now famous for defeating University of Virginia in

March Madness
I One of the research universities under the University

System of Maryland
I Professors spend time with research (40-50\
I Sponsored research is common

I Diversity is important value for the campus
I Students from all backgrounds do not only co-exist but

interact and learn from each other
I Department of Information Systems at UMBC offers

PhD, Master’s, and Undergraduate degrees



Context: Health Informatics and Technologies Lab
at UMBC

I We conduct research to help individuals and organizations
leverage informatics and IT to improve quality of
healthcare, improve outcomes, and reduce costs.

I Publications in reputable and important venues or
conferences

I Research highly interdisciplinary and applied; directed to
solve real life problems

I Research means extending the boundaries of knowledge
I In this environment, we write a lot of code. Coding is a

means to an end
I Code for us or others to read, understand, and execute
I Code for others to execute

I Interest in publishing and commercializing
I Currently six programmers, two professional programmers



Context: Development in Lab
I Rapid development becomes necessary to accommodate

and support learning cycles
I Prototypes are often usable products deployed in the

sponsoring agency
I Development resources come from the research budgets
I Master’s and PhD students from various backgrounds

participate in development
I Informatics, Information

Technology, Engineering, Computer Science
I Not only computer science
I Programming knowledge from at least one programming

course and one database course
I Languages: C and standard query
I OS: Linux shop. Closed network of Debian workstations

and Debian and Windows servers
I Linux utilities and editors Emacs and Vim, etc.



Context: Development Domain

I Healthcare
I Highly regulated domain
I High sensitivities on privacy and confidentiality

I Healthcare Administration
I Medicaid services management
I Data analytics
I Data quality

I Development of tools for
I Data analysis and reporting
I Data quality improvement



Decision Making: Desktop vs Web-Based
I Ease of use slightly favors Desktop

I Powerful and established GUI widgets
I Maturity of the underlying platforms slighly favors

desktop
I Browsers change more often

I Performance (in terms of response time) slightly favors
Desktop

I Security slightly favors Desktop
I Web application frameworks still problematic

I Ease of Development slightly favors desktop
I Many web frameworks require students to learn multiple

languages: HTML, javascript, CSS, and a server-side
language (java, python, ruby, or Tcl)

Ease of deployment slightly favors web-based
I Starkits and starpacks looked promising



Decision Making: Language
I We consider Tcl, Ruby, Python, and Java
I Java was not chosen because

I Non-scripted nature makes rapid-development difficult
I Language not easy to learn and use even after students

take a class
I Ruby and Python not chosen

I Their widget libraries not as easy as Tk
I There are wrappers based on Tk
I Generally, comes with a lot of libraries generating

dependencies
I Tcl chosen because

I Embedding C code is easy
I Tk was made for Tcl
I Database connection with sqlite3 seemed straightforward
I Seemed different but easy to learn
I Not necessarily OO
I Mature: Still changing but not experimental
I Can run on multiple platforms



Decision Making: Ecosystem
I sqlite3:

I Knew about it but took a closer look when considering
sqlite3

I Chosen because of its serverless and high-performance
nature

I Offered an opportunity to keep healthcare data local at
the individual’s desktops or on the organization server

I Fossil
I Decision in this case was easier because I knew git did

not work
I git was difficult to understand and use for our students
I Fossil offered web-based visualization and ticketing
I Based on sqlite3 it is extensible. You can see and modify

all tables
I Overall, we obtained a Visual Basic + Access type of

environment I had in mid 90’s, but within a Unix
environment



Findings and Observations

I Effective ecosystem for developing small applications
rapidly

I Student with different backgrounds learned within a week
I Professional programmers joined the projects easily and

communicated over Fossil
I Students liked Tk and the availability of widgets
I Extended the widgets (Clif’s rich-text editor widget)
I Students also developed ineffective and inefficient user

interfaces
I Ability to quickly deploy user interfaces need to be

augmented by paying attention to timeless user interface
design principles



Findings and Observations - II

I However, our systems grew over time
I Standalone to client-server switch was quickly made by

redefining the db command and using comm package
I We still left the data processing to client and stored

client-specific data on the desktop
I Server database included data shared in the organization
I With some database adjustments (WAL), this server

solution accomodated low traffic requests
I Installation program installs and runs the program as a

service in windows and linux.



Findings and Observations - III

I Students report there are lack of resources
I They have the books, wiki, documentation
I However, I figured they learn differently – good or bad

arguable
I They want to look at examples on stackoverflow

I There were many instances when student got stuck for a
couple of days on a technical problem

I I found it was in the documentation



Findings and Observations - IV

I Perceived popularity problem
I Python picked up in many domains including scientific

domains
I Easier to make a case for Python and convince others
I Tcl needs more convincing

I We developed an autoupdate feature which regularly
checks for updates and updates the main starkit for the
program (presented by Zhang)

I This feature in sdx.kit had some bugs that we had to fix,
and it took time to develop

I Now it works, it also performs database migrations
(presented by Banerjee)



Findings and Observations - V

I Security is generally good because we avoid clickjacking,
session stealing attacks by not developing web software

I However, often we had to use someone else’s tclkit.
I Tools for generating Tclkits were complex and it required

us to rely on other’s code
I This was unacceptable for our clients
I Steve Huntley developed a mechanism for generating

tclkits presented in this conference
I Predictive modeling capabilities going beyond regression

are unavilable in Tcl
I Python has advantages in this area; R is the best but its

ecosystem is mostly GPLed



Findings and Observations - VI

I Some students preferred to batteries-ready approach of
Python where you can find many libraries

I I think less reliance and dependencies to external
packages is actually better

I At least in this project, we were able to code our own
solutions for things like

I Authorization and authentication
I Database migration

I Many external dependencies evolving at a different rate,
some becoming unavailable, or breaking

the previous contracts and agreements is a huge headache in
software development

I Students needed a package manager – one is available
but we did not use it because it worked for Active Tcl



Conclusion

I A university lab and small business has many similarities:
For example, collective code ownership

I Tcl ecosystem supports developing software in a small
setting by facilitating rapid prototyping to achieve and
demonstrate success

I It is appropriate for building intellectual property for
commercialization because the software solutions in this
ecosystem mostly use BSD license

I Fossil is hosted internally in the lab. Its features for
managing source code and ticketing worked without any
issue for three years



Conclusion - II

I Overall, we were able to successfully finish the prototypes
with the three students in the lab within time and budget

I Demonstrated success brought additional funding which
allowed us to work with Clif and Steve

I Of course, success has many different forms
I These experiences do not mean

I Other tools or ecosystems cannot be adopted successfully
I Or this ecosystem will lead to success each time

I Nevertheless, it reports a successful experience at least
one university setting



Recommendations

I Research groups in academia and industry should consider
Tcl/Tk ecosystem

I To us it looks like, promotion to increase popularity is the
biggest need and growing the community is the most
immediate concern

I Creative solutions are needed since everyone is busy
I Students mentioned, it would be good to have a

I Better looking website
I More organized wiki
I More examples
I Video tutorials highlighting the small ways in which Tcl

is used
I We should also approach this problem on the business

side
I By demonstrating success, we can bring in projects with

larger budgets that hire more programmers



Recommendations - II

I For those who want to go fast, availability of libraries will
be important

I Web application development framework needs to be
developed and supported

I A lot of need for rapid application development need in
this area – even though we intentionally developed
client-server desktop applications

I Tcl-based statistical learning packages would be extremely
useful for pure Tcl applications

I Currently, there is a need to rely on Python and R



Thanks

I We would like to say a big thank you to all those who
worked on the Tcl/Tk ecosystem and made these
solutions available to us

I Questions/Answers?


