

A Reboot of the Starpack Build
Process

For Tcl 8.6 and beyond

Steve Huntley
Health Information Technology Lab

University of Maryland, Baltimore County

Tcl/Tk Conference 2018

● “How can I package my Tcl/Tk application into a
single distributable executable file?”

● “What’s a Starpack”

● “Why do I need a basekit?”

● “What’s a basekit?”

● “Where do I get a basekit?”

● “Is a basekit available for my platform?”

● “My basekit isn’t working. What do I do?”

HITLab Data Quality Toolkit (DQT)

● Automatic defect detection in
large manually-entered
databases

● 470 Tcl code files

● 29 packages

● Compiled loadable shared
libraries

● Linux/Windows/???

● Server/client in one deliverable

● Updates after distribution

Motivation:

Medical ethics:

● safeguard personal
information

● accountability,
auditability

● results verifiable and
reproducible

Engineering:

● transparency
● maintainable
● upgradable
● portable
● stable
● secure

Basekit Build Tool History

● Tclkit
– Jean-Claude Wippler (equi4.com)
– Late 1990’s
– M.sh (1kB shell script)

● Genkit
– 25kB Tcl script
– Source code downloaded from equi4.com web site

● Kitgen (2006)
– config.sh + Makefile

#!/bin/sh

Build TclKit on Linux

V=8.4

P=`pwd`
O=$P/../Dists

cd $O/Tcl/unix
./configure --disable-shared
make libtcl$V.a

cd $O/Tk/unix
./configure --disable-shared --with-
tcl=$O/Tcl/unix
make libtk$V.a

cd $O/Itcl/itcl
./configure --disable-shared --with-
tcl=$O/Tcl/unix
make libitcl3.3.a

cd $O/Mk4tcl/builds
../unix/configure --disable-shared --with-
tcl=$O/Tcl/generic
make libmk4tcl.la

cd $P
pwd

W="-D_LARGEFILE64_SOURCE
-DHAVE_STRUCT_STAT64=1
-DHAVE_TYPE_OFF64_T=1"
D="-DNDEBUG -DKIT_INCLUDES_TK
-DKIT_INCLUDES_ITCL $W"
A="-DTCL_LOCAL_APPINIT=TclKit_AppInit"
I="-I. -I$O/Tcl/generic -I$O/Tk/generic
-I$O/Mk4tcl/include"
L="$O/Tcl/unix/libtcl$V.a
$O/Tk/unix/libtk$V.a \
$O/Itcl/itcl/libitcl3.3.a
$O/Mk4tcl/builds/.libs/libmk4tcl.a"
#X="/usr/X11R6/lib/libX11.a"
X="-L/usr/X11R6/lib -lX11"

rm -f *.o
gcc -c -O3 $I $D $TCL_DEFS src/*.c
$O/Vfs/generic/vfs.c
gcc -c -O3 $I $D $TCL_DEFS $A
$O/Tcl/unix/tclAppInit.c
g++ -static -o kit *.o $L $X -ldl -lieee -lm
-lz

strip kit
rm *.o

rm -f tclkit
./kit

ls -l tclkit

Basekit Build Tool History

● Kitgen Build System (2007)
– René Zaumseil
– 100 kB Tcl script
– Basekit + many library package extensions
– Shipped with all source code

● Kitcreator (2010)
– Roy Keene
– Basekit + many library package extensions
– 8.6 kB shell script plus extra build scripts per library
– Source downloaded from respective lib home sites
– Patches applied to some sources
– WWWeb interface

Wanted: new basekit build system

● Minimal (most desired library extensions can be
dynamically loaded as packages from VFS at runtime)

● Transparent
● Modular
● Configurable
● Extendable
● Hackable
● Fossil repository control → backup/archive

Architecture: changes for Tcl 8.6

● Libraries included in basekit:
– Tcl
– TclVFS (virtual filesystem)
– Mk4tcl (Metakit)
– zlib
– rechan (reflected channel)
– pwb (encoding bug workarounds)
– libieee

Architecture: changes for Tcl 8.6

● Obsoleted by Tcl 8.5:
– rechan: reflected channels now part of core
– pwb: encoding bugs fixed

● Obsoleted by Tcl 8.6:
– zlib: now included in core

● Obsoleted by glibc 2.x
– libieee

Recent TclVFS (1.4.2+) looks for new built-in funcs before
fallback to old rechan and zlib APIs. Thus a basekit with upgraded
TclVFS and Tcl 8.6 can exclude these old libs entirely!

Pursuit: modularity, configurability

● Traditionally, basekits have been built by
single scripts, script/Makefile combos:

– Limited configurability
– Dense
– Intimidating to hack, debug
– Barrier to upgrading, expanding, custom config.

Pursuit: modularity, configurability

New Tools:
● TEPAM

– "Tcl's Enhanced Procedure and Argument Manager"

● Part of Tcllib

● Argument parser
– Full-featured (customizable constraints, error handling)
– Self-documenting

● Can define sub-commands (like an ensemble), and sub-
sub-commands

$./buildkit -help
NAME
 buildkit -
 Build a bare-bones Tclkit.
SYNOPSIS
 buildkit
 [-tcl_version <tcl_version>]
 Tcl version to use in Tclkit, default: "8.6.8"
 [-tk_version <tk_version>]
 Tk version to use in Windows Tclkit, default: "8.6.8"
 [-metakit_version <metakit_version>]
 Metakit version to use in Tclkit, default: "2.4.9.7"
 [-vfs_version <vfs_version>]
 TclVFS version to use in Tclkit, default: "1.4.2"
 [-target <target>]
 Target to pass to make program for building, default: "tclkit"
 [-compress <compress>]
 Specify if files in tclkit vfs are to be stored in compressed
 form. Value of '1' is compressed, '0' is uncompressed, type:
 integer, default: 1
 [-platform <platform>]
 OS platform to build for. currently supported: unix, windows,
 default: "unix"
DESCRIPTION
 Builds a Tclkit with only Tcl, TclVFS and Metakit shared libraries. Only
 pure-Tcl packages and a few encoding files are included in the TclVFS.

 examples:
 -
 buildkit -target distclean # deletes all compiled objects and generated
 Makefiles.
 -
 buildkit -tcl_version 8.6.8 # builds tclkit using Tcl ver. 8.6.8.
 -
 buildkit # builds tclkit with all default values.

Pursuit: modularity, configurability

New tools:
● tmake.tcl

– Pure-Tcl partial make clone
– Part of Ghostscript project
– Affero GPL
– tmake file is a valid makefile
– Accepts command line var settings
– Can include simple makefile, extract vars, rules

● Optionally customize make environment per platform,
etc.

TEPAM + tmake.tcl → basekit
● TEPAM-driven master script “buildkit”:

– Define high-level command-line options, targets
– Write make target recipe code as TEPAM

subcommand
– Format make vars and pass them to tmake

command line...

● tmake makefile:
– Isolate each build component into separate target
– Target rule calls buildkit subcommand to execute

recipe
● (can write build steps as a Tcl script rather than shell script calls)

– Configure, customize, validate, debug, upgrade
each target separately

Results:
● Documented, transparent, modular, portable,

auditable, hackable build project
● Two files:

– buildkit (5 kB)
– makefile (4 kB)

● Future-ready
● Obsolete code eliminated
● Upgrades:

– Tcl → 8.6.8

– TclVFS → 1.4.2

– Metakit → 2.4.9.8

Future Work:

● SQLite – backed basekit:

– A SQLite VFS shim file has recently been
committed to the SQLite fossil repository that
allows a SQLite database to be appended onto
the end of another file, such as an executable.

Future Work:

● Make files/shared libs in Starpack visible to
operating system:

– Unix: Incorporate pure-Tcl FUSE read-only client
● (http://wiki.tcl.tk/13853)

– Mount FUSE client at program start

– Windows: Incorporate pure-Tcl FTP server from
Tcllib

– At program start, boot FTP server and create
filesystem letter drive fed by it

Future Work:

● Replace Autoconfig tools in basekit kitsh sub-
project with pure-Tcl Autosetup
– https://msteveb.github.io/autosetup/

“autosetup is a tool, similar to autoconf, to configure a
build system for the appropriate environment, according
to the system capabilities and the user-selected options.”

A Reboot of the Starpack Build
Process

For Tcl 8.6 and beyond

Steve Huntley
Health Information Technology Lab

University of Maryland, Baltimore County

Tcl/Tk Conference 2018

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

