
A Reboot of the Starpack Build Process for Tcl 8.6 and Beyond

Stephen Huntley, Güneş Koru, Yili Zhang, Urmita Banerjee, Leroy Kim, Clif Flynt

Health IT Lab at UMBC
Department of Information Systems

University of Maryland, Baltimore County
Baltimore, Maryland, USA, 21250

stephen.huntley@alum.mit.edu,
{gkoru,yili.zhang,urmita.banerjee,leroy.kim}@umbc.edu,

CLIF@cflynt.com

Abstract

We describe an initiative to simplify drastically the compilation of Starkit basekits for Unix and Windows, which
excises no-longer-needed code and relies wholly on Tcl tools for build scripts. Basekit code providing once-
essential features is now redundant thanks to Tcl 8.6's feature set, and is eliminated. Our changes facilitate a
professional standard of security auditing and accountability of basekit contents, make it easier to upgrade
separate library components, and will ease future support of new platforms. Tcllib's TEPAM package was used
to create a human-friendly command line wrapper, and Ghostscript's tmake.tcl (a partial clone of standard
make) was used as a flexible and configurable backend compile engine.

1. Introduction

Starkits and Starpacks remain popular among Tcl
developers and their clients as a simple and
effective technology for delivering and deploying
Tcl/Tk applications as a single file, within which
all code files, resources and libraries are stored as
a directory hierarchy in the form of a virtual
filesystem.

A Starkit is a single-file archive of a software
project. The value of a Starkit can be leveraged
by turning it into a Starpack, a single-file
platform-specific executable program. In order to
do that a “basekit” is required, a Tcl interpreter
which includes all the support files and packages
the interpreter needs in a virtual filesystem
appended to the end of the interpreter executable
file. The basekit and Starkit are combined into a
single file as a Starpack, which bootstraps itself
on program startup by locating and mounting the
appended virtual filesystem as part of the startup
sequence.

But obtaining an appropriate basekit has in recent
years become the most challenging step in an
otherwise compellingly simple process. In the
past, developers who did not wish to compile
their own found it easy to rely on pre-compiled
basekits for a range of computer platforms,
provided by trusted sources. As these original
sources have by and large disappeared over the
last decade, their places have been taken by
volunteers who offer their own selections of
basekits on personal websites. In addition, a few
developers have made Herculean efforts to
provide software intended to make compiling
ones own basekit relatively simple. But these
individual efforts face the same challenges as any
software project: maintenance, fixes, upgrades,
etc., and efforts by volunteers are not always
enough to keep everything working properly and
reliably.

The trend has thus been toward increasing
difficulty and unreliability in obtaining stably-
functioning and desirably-configured basekits in

which a developer can have the confidence to bet
ones deployment strategy.

The staff of the Health IT Lab at UMBC[1] are
pursuing an ambitious strategy of rapid
development and deployment of health
information applications in which Tcl/Tk and
Starkit/Starpack technology play a crucial role.
We identified continued access to high-quality
basekits as a risk in our projects. We thus
reviewed current available compilation tools and
techniques, and found that a case could be made
for re-engineering and simplifying the
compilation workflow to a bare-bones level. The
goal was to ensure availability, confidence in
stability and future manageability of Tcl basekit
executables.

Our review also showed that even the most up-to-
date currently available basekits included
outdated supporting libraries, some of which we
found could be upgraded, and some which could
be discarded entirely due to advances in Tcl's base
feature set. We thus decided to take the
opportunity during this re-engineering to make
the first significant changes to the internal
structure of basekits perhaps since their
introduction over fifteen years ago. This entails
leaving behind support for Tcl versions before
8.6, but we reason that the simpler the initial
product is, the easier it will be to maintain and
improve going forward, and we have no need in
our projects to support older versions of Tcl.

Our re-engineered compilation code project was
built from scratch, and doesn't incorporate any
code from existing basekit compilation tools. To
facilitate a rapid prototyping and development
process, we used two powerful and flexible Tcl-
based tools: TEPAM (Tcl's Enhanced Procedure
and Argument Manager)[2] from Tcllib; and
tmake.tcl[3], a partial make clone from the
Ghostscript project.

2. History

The original basekit, “Tclkit”, originated with
Jean-Claude Wippler and was distributed from his
business web site equi4.com[4], starting from

around the turn of the Millennium. The earliest
build system still existing on that site is
“genkit”[5], based on a 25kB Tcl script which
downloaded prepackaged code tarfiles from a
directory on the equi4.com site.

The genkit project contains what looks like an
earlier build script, “M.sh”[6], a brief 1 kilobyte
Tcl script.

Genkit was superseded in 2006 by “Kitgen”[7],
which was driven by a script, config.sh, that
formatted a makefile, which guided the
compilation steps for creating a Tclkit.

In 2007 Kitgen became the Kitgen Build
System[8], a project including a master
controlling Tcl script, kbs.tcl, and individual
scripts for controlling compilation of the
necessary libraries as well as a number of optional
libraries to be included in the final product.

Pre-built Tclkits for multiple platforms were
regularly uploaded to a code.google.com[9]
project page until 2010.

In 2010 the Kitcreator project[10] was released by
Roy Keene. The project comprises a hierarchy of
shell scripts. The scripts not only build a basekit,
they, like Kitgen, control the building of several
optional Tcl loadable package libraries. They also
download source code from the constituent
libraries’ distribution sites, apply patches to the
source code and customize environment variables
for control of library configure scripts and
makefiles.

Kitcreator is an ambitious project that builds
basekits and optional loadable libraries for
multiple platforms with multiple configuration
options. It appears to be the most up-to-date and
actively-maintained tool for generating basekits.
The author also provides a web interface[11] for
generating and downloading custom basekits for
those who don’t want to install and run the project
themselves, which makes obtaining a suitable
basekit simple for the new or busy developer
wanting to get started with the technology.

3. Motivation

Since the Health IT Lab is developing
applications to handle medical data, security and
auditability are high-priority concerns. It is
important to be able to know and verify the
contents and function of the source code of the
applications.

It is also important to have stable access to
executable programs and libraries on all
supported platforms, which entails the necessity
to be able to build repeatably all third-party
products used, from source code which is stored
in repositories managed in-house.

But at the same time we want to be able to
maintain and enhance our third-party code on an
ongoing basis by incorporating new releases,
which may contain important bug fixes and new
features.

We want to be able to port our code to new
platforms as users of the software may demand to
use in the future.

After examining available projects for building
basekits, we found that Kitcreator incorporated
crucial information and techniques for building
basekits in a modern environment. For example,
it applies patches to the Metakit library source
code that allow it to build against current releases
of the Tcl code base.

But Kitcreator’s design – its complexity, its
ability to download source code from arbitrary
web locations and its methods of setting and
passing compilation options via environment
variables through multiple hierarchical levels of
shell levels – made it difficult to have confidence
in what actually was in the final basekit product.
In addition, generation of basekits for all desired
platforms could not be reliably repeated over
time, and Kitcreator’s complexity makes the
prospect of diagnosing and fixing build failures
daunting.

4. Tools

After examining the structure of basekits and the
history of tools for generating them, it became
apparent that the best way to achieve the Lab’s
project goals for third-party open-source software
was to create a new, drastically simplified
compilation workflow with the sole purpose of
reliably and repeatably producing the simplest
possible Tcl basekits on the supported platforms
(Linux and Windows), the workflow being
controlled by Tcl tools that would make it easy to
understand and audit the basekits’ structure, and
easy to debug and fix future problems and
incorporate future enhancements and platform
ports.

TEPAM (part of Tcllib) is a very useful tool for
rapid project development. It is primarily a
feature-rich utility for declaring the syntax and
constraints of arguments for procedures
(including switches, named and unnamed
arguments). It simplifies the tasks of initial
definition and later enhancement of a program’s
API. It has an additional feature not seen in
most other Tcl-based argument-parsing tools: a
self-documenting feature – a human-friendly help
text automatically generated from the argument
definitions. The help text is output when a
precedure is called with a “-help” flag in a way
that Unix power users will find familiar. This is
useful for documentation and ongoing
maintainability.

TEPAM also allows definitions of procedures
with sub-commands, similar to ensembles. It also
allows a second tier of sub-sub-commands
(analogous to the built-in Tcl commands “string is
integer”, “string is list”, etc.). Thus a script with
multiple entry points can be written, giving the
developer a quick way to develop, test and add
features independently before final program
integration.

The Tcl script program tmake.tcl is a partial clone
of the standard make utility. It is part of the
Ghostscript project, licensed under the GNU
Affero General Public License[12]. Like standard
make, it allows quick and flexible definition of a

conditional workflow to build a final product out
of many constituent parts, with the same syntax.
Thus a tmake.tcl makefile is a valid standard
makefile. Tmake.tcl is also able to include and
parse simple standard makefiles, incorporating
their variable and rule definitions.

The fact that tmake.tcl is pure Tcl eliminates
concerns about platform dependence and behavior
of different flavors of make programs. Its
reduced feature set has the advantage of keeping
makefile complexity from getting out of hand. It
is a valuable tool for quickly adding simple
workflow capability to a Tcl-based project.

A few custom edits were made to tmake.tcl to fix
bugs and add a feature: the original tmake.tcl
throws an error if an “include” directive specifies
a file that doesn't exist. The edited tmake.tcl
behaves more consistently with standart (GNU)
make – an include directive specifying a non-
existent file is ignored. This turned out to be an
important improvement, allowing conditional
inclusion of platform-specific makefiles.

TEPAM and tmake.tcl complement each other
well for rapid program development. The runtime
behavior of a makefile can be powerfully and
flexibly controlled by specifying targets and
variable values on the command line, although the
available options can be mysterious. In this
project TEPAM is used in a wrapper script to
specify desired outputs and configurations using
named argument flags, the wrapper script then
passes on the necessary custom settings to
tmake.tcl to guide execution of the makefile. And
since a single TEPAM-based script can be written
to have multiple entry points, the recipes in the
makefile rules can all be calls to a single
documented Tcl script containing all the logic for
building all targets in the makefile, instead of a
mass of confusing platform-dependent calls to the
shell (as a makefile often becomes). TEPAM’s
support for sub-commands makes it easy to
develop and test separate recipes in isolation
before using them together called from the
makefile.

5. Streamlining the basekit build process

The simplest basekit using Metakit for support
file storage, as built by Kitcreator, consists of Tcl
built as a library, the TclVFS[13] package library
and Metakit[14] built as a Tcl package library
(Mk4tcl); plus a project called “kitsh” (kit shell)
containing code necessary for producing a custom
Tcl interpreter and the features required for a
basekit to work. Kitcreator allows specification
of Tcl release used, but the other code base
versions are fixed: TclVFS 1.3, Metakit 2.4.9.7.

The kitsh project includes:

• zlib.c
to provide zlib
compression/decompression features,
necessary pre Tcl 8.6

• rechan.c
to provide a reflected channel feature,
necessary pre Tcl 8.5

• pwb.c
contains a bug workaround for
initialization of encodings, necessary pre
Tcl 8.5

• main.c
to provide the necessary “main” function
for a program

• kitInit.c
bootstrap code to mount the Metakit
virtual filesystem and initialize the
interpreter

For the Health IT Lab streamlining project, a
directory structure was created and populated
with subdirectories containing multiple versions
of Tcl, TclVFS and Metakit, plus the kitsh code
from Kitcreator. A makefile was written that
allowed the version of each component to be
specified at runtime.

The recipes for each build component’s make rule
were extracted from Kitcreator build logs and

simplified by trial and error. The nature of
Kitcreator’s build process -- multiple nested shell
scripts, configure scripts and makefiles – accretes
settings in environment variables and results in
extremely lengthy compiler command lines with
mysterious origins and values. By comparing
these command lines with much older basekit
build scripts (e.g., M.sh, genkit), we guessed at
the really important compiler settings and
eliminated the rest. We found that a basekit could
be compiled successfully with very short compiler
command lines.

Also by trial and error, different versions of Tcl,
TclVFS and Metakit were tried by setting TEPAM
command-line options and passing them via the
wrapper script to tmake.tcl and the makefile. We
found that an up-to-date basekit incorporating Tcl
8.6.8, TclVFS 1.4.2 and Metakit 2.4.9.8 worked
perfectly.

Upgrading to a recent release of TclVFS brought
particular advantages. As examination of the
kitsh package shows, extra libraries for reflected
channels and zlib functions are no longer needed
when using Tcl 8.6, but TclVFS 1.3 still relied on
the commands those libraries provided. TclVFS
1.4.2 has been improved to use the new built-in
zlib and reflected channel features if they are
available.

Thus, with the upgraded TclVFS library
incorporated, we found we were able to eliminate
the kitsh zlib and rechan libraries (as well as the
pwb library) entirely from the end-product
basekit. Additionally, libieee (long deprecated,
yet still incorporated into every basekit
heretofore) is excluded from the final basekit.
These exclusions significantly streamline and
simplify the build process and the operation of the
end product. Only a few simple edits to kitInit.c
were required so that no attempt would be made
to load/initialize the non-existent libraries. This
simplification will make future maintenance of
the basekit project easier.

6. Enabling customization

From the start, basekits have been built using
Metakit as the persistent storage basis for a virtual
filesystem. The developer of the first basekits,
Jean-Claude Wippler, is of course also the author
of Metakit. The Kitcreator project adds the option
of choosing one of two other storage backends, a
zip archive, and an encrypted file archive. But
Metakit is the only backend that allows file writes
to the virtual filesystem as part of the operation of
the basekit post-creation. This is a crucial feature
for the Health IT Lab’s projects, since it is
necessary to be able to push updates to
installations in the field already in use.

But Metakit also presents challenges and issues in
the life of basekits going forward:

• uncertain future support by the author
• introduces a dependency on C++
• lack of database locking makes it prone to

corruption
• writes to the DB are not immediately

saved on disk, commits are written after a
looping time delay, producing a time lag
which might lead to loss of data

It would be nice to be able to hack the basekit
code to explore other back end storage
technologies. It would be especially nice to do
this by hacking Tcl code instead of dealing with
editing and compiling C. But the bootstrap code
in the file kitInit.c is hard-coded to deal with only
the three pre-determined backends.

The hard-coded startup/initialization sequence for
a basekit:

• main function in main.c calls Tcl_Main
with TclKit_AppInit named as the
appInitProc

• Tcl_Main calls TclKit_AppInit in kitInit.c

• TclKit_AppInit calls _Tclkit_Init

• _Tclkit_Init calls _Tclkit_Generic_Init

• _Tclkit_Generic_Init calls
TclSetPreInitScript with the string pointer
preInitCmd which points to Tcl code
formatted as a C string and embedded in
kitInit.c

• preInitCmd is evaluated in Tcl_Init

• preInitCmd sources boot.tcl which defines
the procedure tclInit, which replaces the
default tclInit procedure in Tcl_Init during
standard interpreter initialization

The difficulty of booting a basekit lies in the last
step, which presents a chicken-and-egg problem.
The file boot.tcl must be sourced because it
contains the code for mounting the basekit’s
virtual filesystem. But boot.tcl is stored within
the virtual filesystem.

The kitsh project gets around this problem by
providing custom Tcl code (for each supported
virtual filesystem) that knows the details of the
filesystem persistent storage and can reach into
the storage area before it is mounted (via
TclVFS), retrieve the information corresponding
to the contents of the boot.tcl file, and source it.
The specific bootstrap Tcl code for the selected
backend storage option is incorporated into
preInitCmd via a preprocessor include directive at
compile time.

It would be useful, for the purpose of devising
new basekit backend VFS options, for a developer
to be able to specify none of the default VFS
options at compile time and incorporate custom
VFS code.

It would also be nice to eliminate the chicken-
and-egg problem. Why use preprocessor include
directives to embed custom code for accessing the
contents of boot.tcl in a yet-to-be mounted virtual
filesystem? Why not just use the preprocessor
include directive to embed the boot.tcl code
directly?

These two things have now been done in the
Health IT Lab praoject, simply by adding two
new preprocessor include directives in the
preInitCmd Tcl code in kitInit.c, in a spot in the
code that is not executed unless none of the
default VFS preprocesser defines have been set.
The first include directive is intended to contain
code to define any Tcl virtual filesystem. The
include directive incorporates code from a file
called customvfs.tcl. The second include
directive is intended to incorporate a custom
version of boot.tcl that can access the form of
persistent storage the developer desires, and
mount it as a virtual filesystem using the
previously loaded virtual filesystem code. (Of
course in practice any code can be included to
drive any desired customization of the basekit
intialization process.) Rules have been added in
the makefile to format the custom files as C
strings to make them suitable for inclusion in
kitInit.c

In this way, by making it possible to hack new Tcl
code and incorporate it at compile time, the
initialization of the basekit can be customized in
unlimited ways. This may include, as one
example, creation of pure-Tcl methods of both
reading from and writing to storage areas
appended to the basekit executable, safely and
securely. This will make it easier to move beyond
Metakit as a writable storage solution, if and
when that is deemed desirable.

7. Future work

Starkits and basekit-enabled Starpacks have
existed for close to twenty years, but still have
unexplored potential. Competing application
delivery technologies using other languages and
their tools tend to be unreliable, bulky, messy
and/or insecure[15][16][17]. Thus
Starkit/Starpack technology remains attractive.

A SQLite VFS shim file has recently been
committed to the SQLite fossil repository[18] that
claims to allow an SQLite database to be
appended onto the end of some other file, such as
an executable. The new basekit hacking
capabilities described in the previous section

could be used to create and initialize a basekit that
uses a SQLite-based virtual filesystem as a
writeable file backend.

In pursuit of maximum simplicity, support of
operating system platforms besides Linux and
Windows has been ignored. But the combination
of TEPAM and tmake.tcl has proved useful in
rapid development of modular, configurable code.
The Windows basekit is built by including a
Windows-specific makefile into the base (Linux)
makefiles, overriding rules where necessary and
setting new variable values to enable cross-
compilation, conditionally controlled by the
TEPAM wrapper script. It should be
straightforward to use this approach to develop
makefiles for new platforms, such as Macintosh.

A persistent complaint of Starkit and Starpack
users is the inability of non-Tcl programs to see
into a Starkit’s Tcl virtual filesystem and share
files and libraries, and the inability of a Starkit to
load non-stubs-enabled libraries straight from the
virtual filesustem. The new ability to customize
the initialization of a basekit presents the
possibility of including Linux FUSE (Filesystem
in Userspace) code that allows mounting of a Tcl
virtual filesystem as a FUSE filesystem, thus
allowing the operating system to handle files in a
Starkit as though they were native files. The
same goal could be similarly accomplished on the
Windows platform by creating a Windows
filesystem letter drive linked to a local FTP
server, which is started using an FTP server
package from Tcllib within the basekit with a
custom initialization procedure.

References:

[1] https://drkoru.us/health-it-lab.html

[2] https://core.tcl.tk/tcllib/doc/trunk/embedded/www/tcllib/files/modules/tepam/tepam_introduction.html

[3] http://git.ghostscript.com/?p=ghostpdl.git;a=blob;f=toolbin/tmake.tcl

[4] https://equi4.com/tclkit/

[5] https://equi4.com/pub/tk/tars/genkit

[6] https://code.google.com/archive/p/tclkit/source/default/source?page=7

[7] https://equi4.com/tclkit/kitgen.html

[8] https://sourceforge.net/projects/kbskit/

[9] https://code.google.com/archive/p/tclkit/downloads

[10] http://kitcreator.rkeene.org/fossil/index

[11] http://kitcreator.rkeene.org/kitcreator

[12] https://www.ghostscript.com/license.html

[13] https://core.tcl.tk/tclvfs/index

[14] https://git.jeelabs.org/jcw/metakit

[15] https://wiki.python.org/moin/deployment

[16] https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/

[17] https://hackernoon.com/electron-the-bad-parts-2b710c491547

[18] https://sqlite.org/src/file/ext/misc/appendvfs.c

