Building a Fault-
Tolerant Distributed
System with
zookeepertcl

Tcl Conference 2018
Garrett McGrath



/whois



/whois

e Developer at FlightAware
= Work on Hyperfeed



/whois

e Developer at FlightAware
= Work on Hyperfeed
e Current focus on distribution and
reliability
» Talk based on this work



System Definition



System Definition

e Multiple components (process)

= All need to run concurrently
= Too many to run on a single machine



System Definition

e Multiple components (process)

= All need to run concurrently
= Too many to run on a single machine

e Spread across multiple machines (nodes)
= Egalitarian system

o In terms of compute resources



System Definition

e Multiple components (process)

= All need to run concurrently
= Too many to run on a single machine

e Spread across multiple machines (nodes)
= Egalitarian system
o In terms of compute resources
e Each component

= Runs on one machine at a time
= Allow a node to run multiple components



Faults and Failures



Faults and Failures

e Expect temporary and permanent failures

= Of components
= And nodes



Faults and Failures

e Expect temporary and permanent failures

= Of components
= And nodes

e Want to tolerate

= Crash failures
= Omission failures



Faults and Failures

e Expect temporary and permanent failures

= Of components
= And nodes

e Want to tolerate

= Crash failures
= Omission failures

e Consistency-Availability-Partition
= Address Aand P



Recovery and Failover



Recovery and Failover

 Since failure expected, when it happens



Recovery and Failover

 Since failure expected, when it happens
= Toa component

o Want it to run on another node



Recovery and Failover

 Since failure expected, when it happens
= Toa component
o Want it to run on another node
= Toanode
o Want its components to run on other nodes



Recovery and Failover

 Since failure expected, when it happens
= Toa component
o Want it to run on another node
= Toanode
o Want its components to run on other nodes
e Want a system that
= Supports automated failover

o For common failure conditions



Scope and Limitations



Scope and Limitations

e Cannot protect against all failures



Scope and Limitations

e Cannot protect against all failures
e Consistency/ integrity faults unaddressed



Scope and Limitations

e Cannot protect against all failures
e Consistency/ integrity faults unaddressed
e Byzantine Failure not touched

= Arbitrary and/or malicious responses

o Possibly from unintentional bugs
o Or, collusion among nodes to deceive



Scope and Limitations

e Cannot protect against all failures
e Consistency/ integrity faults unaddressed
e Byzantine Failure not touched

= Arbitrary and/or malicious responses

o Possibly from unintentional bugs
o Or, collusion among nodes to deceive

e Partial addressing of network partitions



Implementation



Implementation

e Fault tolerant distributed system
= With Tcl and Zookeeper



Implementation

e Fault tolerant distributed system
= With Tcl and Zookeeper
e Based on leader election recipe

= Use term in a peculiar way



Implementation

e Fault tolerant distributed system
= With Tcl and Zookeeper

e Based on leader election recipe
= Use term in a peculiar way

e Each component will have a leader



Implementation

e Fault tolerant distributed system
= With Tcl and Zookeeper
e Based on leader election recipe
= Use term in a peculiar way
e Each component will have a leader

= Who is running the component



Implementation

Fault tolerant distributed system
= With Tcl and Zookeeper
Based on leader election recipe

= Use term in a peculiar way

Each component will have a leader

= Who is running the component

With other nodes ready to step in



Per Node Implemention



Per Node Implemention

e Each node runs a supervisor



Per Node Implemention

e Each node runs a supervisor

» Communicates with Zookeeper



Per Node Implemention

e Each node runs a supervisor

» Communicates with Zookeeper
= Elects components

o Starts them if win election
o Orif current leader fails



Per Node Implemention

e Each node runs a supervisor

» Communicates with Zookeeper
= Elects components

o Starts them if win election
o Orif current leader fails

= Monitors components, e.g., SIGCHLD



Per Node Implemention

e Each node runs a supervisor

» Communicates with Zookeeper
= Elects components

o Starts them if win election
o Orif current leader fails

= Monitors components, e.g., SIGCHLD
e Supervisor Knows

= How to start and stop each component
= Other nodes in the system






Zookeeper



Zookeeper

e Distributed coordination service



Zookeeper

e Distributed coordination service
e Developed at Yahoo

» Maintained by the ASF



Zookeeper

e Distributed coordination service
e Developed at Yahoo

» Maintained by the ASF

e Written in Java



Zookeeper

Distributed coordination service
Developed at Yahoo

» Maintained by the ASF

Written in Java
Runs

= Standalone (dev/ testing)



Zookeeper

Distributed coordination service
Developed at Yahoo

» Maintained by the ASF

Written in Java
Runs

= Standalone (dev/ testing)
= Replicated

o Handle k failures
o With 2k + 1 servers



Coordination



Coordination

e Notoriously difficult to get right

= Deadlocks
= Race conditions



Coordination

e Notoriously difficult to get right

= Deadlocks
= Race conditions

e Examples



Coordination

e Notoriously difficult to get right

= Deadlocks
= Race conditions

e Examples

= Barriers



Coordination

e Notoriously difficult to get right

= Deadlocks
= Race conditions

e Examples

= Barriers
= Queues



Coordination

e Notoriously difficult to get right

= Deadlocks
= Race conditions

e Examples

= Barriers
= Queues
= Locks (read or write)



Coordination

e Notoriously difficult to get right

= Deadlocks
= Race conditions

e Examples

= Barriers

= Queues

= Locks (read or write)

» Two-phase commit (atomic
transactions)



Coordination

e Notoriously difficult to get right

= Deadlocks
= Race conditions

e Examples

= Barriers

= Queues

= Locks (read or write)

» Two-phase commit (atomic
transactions)

» Leader election



API



API

e Does not come with pre-baked primitives
based on coordination task



API

e Does not come with pre-baked primitives
based on coordination task
e Exposes a simple API instead

= More flexible
= Use it to implement coordination

tasks
» Provides consistency and availability

guarantees



API, Cont.



API, Cont.

e Based on a file-system like abstraction



API, Cont.

e Based on a file-system like abstraction
= znode
o Combination of file and directory



API, Cont.

e Based on a file-system like abstraction
= znode
o Combination of file and directory
= Provides hierarchical namespace
o Enables process communication



API, Cont.

e Based on a file-system like abstraction
= znode
o Combination of file and directory
= Provides hierarchical namespace
o Enables process communication
e znodes contain

= Data (small amount, typically IMB
max)



API, Cont.

e Based on a file-system like abstraction
= znode
o Combination of file and directory
= Provides hierarchical namespace
o Enables process communication
e znodes contain

= Data (small amount, typically IMB
max)
= Metadata (ACLs, ctime, mtime, atime)









/componentO



/componentO

/componentO/config



/componentO

/componentO/config /componentO/election



APl Operations

What Can We Do



APl Operations

What Can We Do

e Create new znodes



APl Operations

What Can We Do

e Create new znodes

= Durable or ephemeral



APl Operations

What Can We Do

e Create new znodes

= Durable or ephemeral
= Sequential



APl Operations

What Can We Do

e Create new znodes

= Durable or ephemeral
= Sequential

e Delete existing znodes



APl Operations

What Can We Do

e Create new znodes

= Durable or ephemeral
= Sequential

e Delete existing znodes
e Query znodes



APl Operations

What Can We Do

e Create new znodes

= Durable or ephemeral
= Sequential

e Delete existing znodes
e Query znodes

= Exist?



APl Operations

What Can We Do

e Create new znodes

= Durable or ephemeral
= Sequential

e Delete existing znodes
e Query znodes

= EXxist?
= Children?



APl Operations

What Can We Do

Create new znodes

= Durable or ephemeral
= Sequential

Delete existing znodes
Query znodes

= EXxist?
= Children?

Get / modify znode {meta, }data



Watch Callbacks

(e



Watch Callbacks

e Several operations support a watch
callback

= One-time callback invoked when the
znode changes

(e



Watch Callbacks

e Several operations support a watch
callback

= One-time callback invoked when the
znode changes

(e

e A getor exists watch

= Called when the znode modified



Watch Callbacks

e Several operations support a watch
callback

= One-time callback invoked when the
znode changes

(e

e A getor exists watch
s Called when the znode modified
e A childrenwatch

= Called when anything happens to the
znode's children



zookeepertcl



zookeepertcl

e Open-source library

» github.com/flightaware/zookeepertcl



zookeepertcl

e Open-source library
» github.com/flightaware/zookeepertcl
e Wraps the official C client

» Supports the latest stable Zookeeper version
o 1r3.4.13



zookeepertcl

e Open-source library
» github.com/flightaware/zookeepertcl
e Wraps the official C client
» Supports the latest stable Zookeeper version
o 1r3.4.13
e Each API operation supports two styles

= Synchronous
= Asynchronous






# zookeepertcl provides aptly named zookeeper package

package require zookeeper




# zookeepertcl provides aptly named zookeeper package
package require zookeeper

# Turn off C client stderr debugging statements
zookeeper: :zookeeper debug level none




# zookeepertcl provides aptly named zookeeper package
package require zookeeper

# Turn off C client stderr debugging statements
zookeeper: :zookeeper debug level none

# Connect to a Zookeeper server/cluster

# End up with a new command zk which supports
# sub-commands for using the Zookeeper API

set hostStr "hostl1:2181,host2:2181,host3:2181"
set timeout 5000

zookeeper: :zookeeper init zk ShostStr S$timeout







# Use the Zookeeper API!

## Create some znodes for the system components
for {set i 0} {$i < S$totalComponents} {incr i} {
set componentRoot [file join / component$i]

zk create ScomponentRoot
zk create [file join S$componentRoot args]
zk create [file join S$componentRoot election]




# Use the Zookeeper API!

## Create some znodes for the system components
for {set i 0} {$i < S$totalComponents} {incr i} {
set componentRoot [file join / component$i]

zk create ScomponentRoot

zk create [file join S$componentRoot args]
zk create [file join S$componentRoot election]

## Exists
zk exists /componentO; # 1







## Children
set rootZnodes [zk children /]

lsearch -all -inline -glob S$rootZnodes component*




## Children
set rootZnodes [zk children /]
lsearch -all -inline -glob S$rootZnodes component*

## Get

set cOArgs [file join / componentO args]
zk get ScOArgs -stat cOArgsStats




## Children
set rootZnodes [zk children /]
lsearch -all -inline -glob S$rootZnodes component*

## Get

set cOArgs [file join / componentO args]
zk get ScOArgs -stat cOArgsStats

## Set
zk set ScOArgs "commadArgs" S$cOArgsStats(version)




## Children
set rootZnodes [zk children /]
lsearch -all -inline -glob S$rootZnodes component*

## Get
set cOArgs [file join / componentO args]
zk get ScOArgs -stat cOArgsStats

## Set
zk set ScOArgs "commadArgs" S$cOArgsStats(version)

## Delete
zk delete ScOArgs [expr {ScOArgsStats(version) + 1}]







Step 1

Create znode z with path
"ELECTION/n_" with both

SEQUENCE and EPHEMERAL
flags;






# assume that SelectionRoot already exists

set electionRoot [file join / component(0 election]




# assume that SelectionRoot already exists
set electionRoot [file join / component(0 election]

set myVote [file join S$electionRoot

n_ll ]




# assume that SelectionRoot already exists
set electionRoot [file join / component(0 election]

set myVote [file join $electionRoot "n "]

set z [zk create $SmyVote -ephemeral -sequence]




Step 2

Let C be the children of
"ELECTION", and i be the
sequence number of z;






# zk children returns relative znode paths

set C [zk children SelectionRoot]




# zk children returns relative znode paths
set C [zk children SelectionRoot]

# create returns a full path
set zRelative [lindex [file split $z] end]




# zk children returns relative znode paths
set C [zk children SelectionRoot]

# create returns a full path
set zRelative [lindex [file split $z] end]

# use scan to extract i1 since sequence numbers
# in format %010d, i.e., 10 digits padded w/ Os
set 1 [scan [lindex [split $zRelative ] end] %d]




Step 3

Watch for changes on
"ELECTION/n_j", where j is the
largest sequence number such
thatj<iand n_jis a znode in C;






# Sort C to make things easier
set Cdigits [lmap vote $C {
scan [lindex [split $vote ] end] %d

}]

set sortedC [lsort -integer $Cdigits]
watch next node $sortedC $i $electionRoot




# Sort C to make things easier
set Cdigits [lmap vote $C {
scan [lindex [split $vote ] end] %d

}]

set sortedC [lsort -integer $Cdigits]
watch next node $sortedC $i $electionRoot

proc watch next node {sortedC i electionPath} {
# i's position in the sorted list
set iPos [lsearch SsortedC $i]

# the leader is element 0 in the sorted list of votes
if {$iPos != 0} {

set j [lindex S$sortedC [expr {$i - 1}1]]

set jPath [file join S$electionPath "n $j"]

zk exists $jPath -watch election change

else {

# run the component since election was won




Implementation
Decisions

“All my decisions are well thought out.”



Abdication
Giving up Leadership



Abdication
Giving up Leadership

e Timing of elections can result in massive

asymmetries

= Do not want one node to crowd out
others



Abdication
Giving up Leadership

e Timing of elections can result in massive

asymmetries

= Do not want one node to crowd out
others

e Implement a policy of abdication

= Based on, e.g., fair distribution
= Delay after win election
= [fleader, set children watch



Restart Loops
Limiting Abdication



Restart Loops
Limiting Abdication

e Intermittent failures and abdication

= Single component could get passed
around



Restart Loops
Limiting Abdication

e Intermittent failures and abdication

= Single component could get passed
around

e Need to avoid this potential instability
= Matter of retaining sufficient state

o Can do locally
o Orin znodes



Intentional Stops
Retaining Leadership



Intentional Stops
Retaining Leadership

e Often desirable to restart or stop
component

= Without giving up current leadership



Intentional Stops
Retaining Leadership

e Often desirable to restart or stop
component

= Without giving up current leadership

e Main justification for using a supervisor



Intentional Stops
Retaining Leadership

e Often desirable to restart or stop
component

= Without giving up current leadership

e Main justification for using a supervisor
e Many potential methods of addressing
this
= One is to use special znodes to pass
commands



Config Changes

Targeted Restarts



Config Changes

Targeted Restarts

e Watch callbacks on /config portion of
component's znode hierarchy



Config Changes

Targeted Restarts

e Watch callbacks on /config portion of
component's znode hierarchy
e Callbacks can pile up

» E.g., delete one argument and add
another



Config Changes

Targeted Restarts

e Watch callbacks on /config portion of
component's znode hierarchy
e Callbacks can pile up

» E.g., delete one argument and add
another

e Need a way of performing targeted
restarts



Connection Loss
Zookeeper Session States



Connection Loss
Zookeeper Session States

e Need a policy about what to do when
connection to Zookeeper is lost

= Watch callbacks do not persist



Connection Loss
Zookeeper Session States

e Need a policy about what to do when
connection to Zookeeper is lost
= Watch callbacks do not persist
e Zookeeper connections

= Called a session

= Represented as a state machine

= Distinguishes connection lost or
interrupted



