
Building a Fault-Building a Fault-
Tolerant DistributedTolerant Distributed

System withSystem with
zookeepertclzookeepertcl
Tcl Conference 2018Tcl Conference 2018

Garrett McGrathGarrett McGrath

/whois/whois

/whois/whois
Developer at FlightAware

Work on Hyperfeed

/whois/whois
Developer at FlightAware

Work on Hyperfeed

Current focus on distribution and
reliability

Talk based on this work

System DefinitionSystem Definition

System DefinitionSystem Definition
Multiple components (process)

All need to run concurrently
Too many to run on a single machine

System DefinitionSystem Definition
Multiple components (process)

All need to run concurrently
Too many to run on a single machine

Spread across multiple machines (nodes)

Egalitarian system

In terms of compute resources

System DefinitionSystem Definition
Multiple components (process)

All need to run concurrently
Too many to run on a single machine

Spread across multiple machines (nodes)

Egalitarian system

In terms of compute resources

Each component

Runs on one machine at a time
Allow a node to run multiple components

Faults and Failures Faults and Failures

Faults and Failures Faults and Failures
Expect temporary and permanent failures

Of components
And nodes

Faults and Failures Faults and Failures
Expect temporary and permanent failures

Of components
And nodes

Want to tolerate

Crash failures
Omission failures

Faults and Failures Faults and Failures
Expect temporary and permanent failures

Of components
And nodes

Want to tolerate

Crash failures
Omission failures

Consistency-Availability-Partition

Address A and P

Recovery and FailoverRecovery and Failover

Recovery and FailoverRecovery and Failover
Since failure expected, when it happens

Recovery and FailoverRecovery and Failover
Since failure expected, when it happens

To a component

Want it to run on another node

Recovery and FailoverRecovery and Failover
Since failure expected, when it happens

To a component

Want it to run on another node

To a node

Want its components to run on other nodes

Recovery and FailoverRecovery and Failover
Since failure expected, when it happens

To a component

Want it to run on another node

To a node

Want its components to run on other nodes

Want a system that

Supports automated failover

For common failure conditions

Scope and LimitationsScope and Limitations

Scope and LimitationsScope and Limitations
Cannot protect against all failures

Scope and LimitationsScope and Limitations
Cannot protect against all failures
Consistency / integrity faults unaddressed

Scope and LimitationsScope and Limitations
Cannot protect against all failures
Consistency / integrity faults unaddressed
Byzantine Failure not touched

Arbitrary and/or malicious responses

Possibly from unintentional bugs
Or, collusion among nodes to deceive

Scope and LimitationsScope and Limitations
Cannot protect against all failures
Consistency / integrity faults unaddressed
Byzantine Failure not touched

Arbitrary and/or malicious responses

Possibly from unintentional bugs
Or, collusion among nodes to deceive

Partial addressing of network partitions

ImplementationImplementation

ImplementationImplementation
Fault tolerant distributed system

With Tcl and Zookeeper

ImplementationImplementation
Fault tolerant distributed system

With Tcl and Zookeeper

Based on leader election recipe

Use term in a peculiar way

ImplementationImplementation
Fault tolerant distributed system

With Tcl and Zookeeper

Based on leader election recipe

Use term in a peculiar way

Each component will have a leader

ImplementationImplementation
Fault tolerant distributed system

With Tcl and Zookeeper

Based on leader election recipe

Use term in a peculiar way

Each component will have a leader

Who is running the component

ImplementationImplementation
Fault tolerant distributed system

With Tcl and Zookeeper

Based on leader election recipe

Use term in a peculiar way

Each component will have a leader

Who is running the component

With other nodes ready to step in

Per Node ImplementionPer Node Implemention

Per Node ImplementionPer Node Implemention
Each node runs a supervisor

Per Node ImplementionPer Node Implemention
Each node runs a supervisor

Communicates with Zookeeper

Per Node ImplementionPer Node Implemention
Each node runs a supervisor

Communicates with Zookeeper
Elects components

Starts them if win election
Or if current leader fails

Per Node ImplementionPer Node Implemention
Each node runs a supervisor

Communicates with Zookeeper
Elects components

Starts them if win election
Or if current leader fails

Monitors components, e.g., SIGCHLD

Per Node ImplementionPer Node Implemention
Each node runs a supervisor

Communicates with Zookeeper
Elects components

Starts them if win election
Or if current leader fails

Monitors components, e.g., SIGCHLD

Supervisor Knows

How to start and stop each component
Other nodes in the system

ZookeeperZookeeper

ZookeeperZookeeper
Distributed coordination service

ZookeeperZookeeper
Distributed coordination service
Developed at Yahoo

Maintained by the ASF

ZookeeperZookeeper
Distributed coordination service
Developed at Yahoo

Maintained by the ASF

Written in Java

ZookeeperZookeeper
Distributed coordination service
Developed at Yahoo

Maintained by the ASF

Written in Java
Runs

Standalone (dev / testing)

ZookeeperZookeeper
Distributed coordination service
Developed at Yahoo

Maintained by the ASF

Written in Java
Runs

Standalone (dev / testing)
Replicated

Handle k failures
With 2k + 1 servers

CoordinationCoordination

CoordinationCoordination
Notoriously difficult to get right

Deadlocks
Race conditions

CoordinationCoordination
Notoriously difficult to get right

Deadlocks
Race conditions

Examples

CoordinationCoordination
Notoriously difficult to get right

Deadlocks
Race conditions

Examples

Barriers

CoordinationCoordination
Notoriously difficult to get right

Deadlocks
Race conditions

Examples

Barriers
Queues

CoordinationCoordination
Notoriously difficult to get right

Deadlocks
Race conditions

Examples

Barriers
Queues
Locks (read or write)

CoordinationCoordination
Notoriously difficult to get right

Deadlocks
Race conditions

Examples

Barriers
Queues
Locks (read or write)
Two-phase commit (atomic
transactions)

CoordinationCoordination
Notoriously difficult to get right

Deadlocks
Race conditions

Examples

Barriers
Queues
Locks (read or write)
Two-phase commit (atomic
transactions)
Leader election

APIAPI

APIAPI
Does not come with pre-baked primitives
based on coordination task

APIAPI
Does not come with pre-baked primitives
based on coordination task
Exposes a simple API instead

More flexible
Use it to implement coordination
tasks
Provides consistency and availability
guarantees

API, Cont.API, Cont.

API, Cont.API, Cont.
Based on a file-system like abstraction

API, Cont.API, Cont.
Based on a file-system like abstraction

znode
Combination of file and directory

API, Cont.API, Cont.
Based on a file-system like abstraction

znode
Combination of file and directory

Provides hierarchical namespace

Enables process communication

API, Cont.API, Cont.
Based on a file-system like abstraction

znode
Combination of file and directory

Provides hierarchical namespace

Enables process communication

znodes contain

Data (small amount, typically 1MB
max)

API, Cont.API, Cont.
Based on a file-system like abstraction

znode
Combination of file and directory

Provides hierarchical namespace

Enables process communication

znodes contain

Data (small amount, typically 1MB
max)
Metadata (ACLs, ctime, mtime, atime)

/

/

 /component0

/

 /component0

/component0/config

/

 /component0

/component0/election/component0/config

API OperationsAPI Operations
What Can We Do What Can We Do

API OperationsAPI Operations
What Can We Do What Can We Do

Create new znodes

API OperationsAPI Operations
What Can We Do What Can We Do

Create new znodes

Durable or ephemeral

API OperationsAPI Operations
What Can We Do What Can We Do

Create new znodes

Durable or ephemeral
Sequential

API OperationsAPI Operations
What Can We Do What Can We Do

Create new znodes

Durable or ephemeral
Sequential

Delete existing znodes

API OperationsAPI Operations
What Can We Do What Can We Do

Create new znodes

Durable or ephemeral
Sequential

Delete existing znodes
Query znodes

API OperationsAPI Operations
What Can We Do What Can We Do

Create new znodes

Durable or ephemeral
Sequential

Delete existing znodes
Query znodes

Exist?

API OperationsAPI Operations
What Can We Do What Can We Do

Create new znodes

Durable or ephemeral
Sequential

Delete existing znodes
Query znodes

Exist?
Children?

API OperationsAPI Operations
What Can We Do What Can We Do

Create new znodes

Durable or ephemeral
Sequential

Delete existing znodes
Query znodes

Exist?
Children?

Get / modify znode {meta,}data

Watch CallbacksWatch Callbacks

Watch CallbacksWatch Callbacks
Several operations support a watch
callback

One-time callback invoked when the
znode changes

Watch CallbacksWatch Callbacks
Several operations support a watch
callback

One-time callback invoked when the
znode changes

A get or exists watch

Called when the znode modified

Watch CallbacksWatch Callbacks
Several operations support a watch
callback

One-time callback invoked when the
znode changes

A get or exists watch

Called when the znode modified

A children watch

Called when anything happens to the
znode's children

zookeepertclzookeepertcl

zookeepertclzookeepertcl
Open-source library

github.com/flightaware/zookeepertcl

zookeepertclzookeepertcl
Open-source library

github.com/flightaware/zookeepertcl

Wraps the official C client

Supports the latest stable Zookeeper version

r3.4.13

zookeepertclzookeepertcl
Open-source library

github.com/flightaware/zookeepertcl

Wraps the official C client

Supports the latest stable Zookeeper version

r3.4.13

Each API operation supports two styles

Synchronous
Asynchronous

zookeepertcl provides aptly named zookeeper package
package require zookeeper

zookeepertcl provides aptly named zookeeper package
package require zookeeper

Turn off C client stderr debugging statements
zookeeper::zookeeper debug_level none

zookeepertcl provides aptly named zookeeper package
package require zookeeper

Turn off C client stderr debugging statements
zookeeper::zookeeper debug_level none

Connect to a Zookeeper server/cluster
End up with a new command zk which supports
sub-commands for using the Zookeeper API
set hostStr "host1:2181,host2:2181,host3:2181"
set timeout 5000
zookeeper::zookeeper init zk $hostStr $timeout

Use the Zookeeper API!

Create some znodes for the system components
for {set i 0} {$i < $totalComponents} {incr i} {
 set componentRoot [file join / component$i]
 zk create $componentRoot
 zk create [file join $componentRoot args]
 zk create [file join $componentRoot election]
}

Use the Zookeeper API!

Create some znodes for the system components
for {set i 0} {$i < $totalComponents} {incr i} {
 set componentRoot [file join / component$i]
 zk create $componentRoot
 zk create [file join $componentRoot args]
 zk create [file join $componentRoot election]
}

Exists
zk exists /component0; # 1

Children
set rootZnodes [zk children /]
lsearch -all -inline -glob $rootZnodes component*

Children
set rootZnodes [zk children /]
lsearch -all -inline -glob $rootZnodes component*

Get
set c0Args [file join / component0 args]
zk get $c0Args -stat c0ArgsStats

Children
set rootZnodes [zk children /]
lsearch -all -inline -glob $rootZnodes component*

Get
set c0Args [file join / component0 args]
zk get $c0Args -stat c0ArgsStats

Set
zk set $c0Args "commadArgs" $c0ArgsStats(version)

Children
set rootZnodes [zk children /]
lsearch -all -inline -glob $rootZnodes component*

Get
set c0Args [file join / component0 args]
zk get $c0Args -stat c0ArgsStats

Set
zk set $c0Args "commadArgs" $c0ArgsStats(version)

Delete
zk delete $c0Args [expr {$c0ArgsStats(version) + 1}]

Leader Election Recipe

Step 1Step 1
Create Create znodeznode z with path z with path

"ELECTION/n_" with both"ELECTION/n_" with both
SEQUENCE and EPHEMERALSEQUENCE and EPHEMERAL

flags;flags;

assume that $electionRoot already exists
set electionRoot [file join / component0 election]

assume that $electionRoot already exists
set electionRoot [file join / component0 election]

set myVote [file join $electionRoot "n_"]

assume that $electionRoot already exists
set electionRoot [file join / component0 election]

set myVote [file join $electionRoot "n_"]

set z [zk create $myVote -ephemeral -sequence]

Step 2Step 2
Let C be the children ofLet C be the children of

"ELECTION", and i be the"ELECTION", and i be the
sequence number of z;sequence number of z;

zk children returns relative znode paths
set C [zk children $electionRoot]

zk children returns relative znode paths
set C [zk children $electionRoot]

create returns a full path
set zRelative [lindex [file split $z] end]

zk children returns relative znode paths
set C [zk children $electionRoot]

create returns a full path
set zRelative [lindex [file split $z] end]

use scan to extract i since sequence numbers
in format %010d, i.e., 10 digits padded w/ 0s
set i [scan [lindex [split $zRelative _] end] %d]

Step 3Step 3
Watch for changes onWatch for changes on

"ELECTION/n_j", where j is the"ELECTION/n_j", where j is the
largest sequence number suchlargest sequence number such
that j < i and n_j is a znode in C;that j < i and n_j is a znode in C;

Sort C to make things easier
set Cdigits [lmap vote $C {
 scan [lindex [split $vote _] end] %d
}]

set sortedC [lsort -integer $Cdigits]
watch_next_node $sortedC $i $electionRoot

Sort C to make things easier
set Cdigits [lmap vote $C {
 scan [lindex [split $vote _] end] %d
}]

set sortedC [lsort -integer $Cdigits]
watch_next_node $sortedC $i $electionRoot

proc watch_next_node {sortedC i electionPath} {
 # i's position in the sorted list
 set iPos [lsearch $sortedC $i]

 # the leader is element 0 in the sorted list of votes
 if {$iPos != 0} {
 set j [lindex $sortedC [expr {$i - 1}]]
 set jPath [file join $electionPath "n_$j"]
 zk exists $jPath -watch election_change
 } else {
 # run the component since election was won
 }
}

ImplementationImplementation
DecisionsDecisions

AbdicationAbdication
Giving up LeadershipGiving up Leadership

AbdicationAbdication
Giving up LeadershipGiving up Leadership
Timing of elections can result in massive
asymmetries

Do not want one node to crowd out
others

AbdicationAbdication
Giving up LeadershipGiving up Leadership
Timing of elections can result in massive
asymmetries

Do not want one node to crowd out
others

Implement a policy of abdication

Based on, e.g., fair distribution
Delay after win election
If leader, set children watch

Restart LoopsRestart Loops
Limiting AbdicationLimiting Abdication

Restart LoopsRestart Loops
Limiting AbdicationLimiting Abdication
Intermittent failures and abdication

Single component could get passed
around

Restart LoopsRestart Loops
Limiting AbdicationLimiting Abdication
Intermittent failures and abdication

Single component could get passed
around

Need to avoid this potential instability

Matter of retaining sufficient state

Can do locally
Or in znodes

Intentional StopsIntentional Stops
Retaining LeadershipRetaining Leadership

Intentional StopsIntentional Stops
Retaining LeadershipRetaining Leadership

Often desirable to restart or stop
component

Without giving up current leadership

Intentional StopsIntentional Stops
Retaining LeadershipRetaining Leadership

Often desirable to restart or stop
component

Without giving up current leadership

Main justification for using a supervisor

Intentional StopsIntentional Stops
Retaining LeadershipRetaining Leadership

Often desirable to restart or stop
component

Without giving up current leadership

Main justification for using a supervisor
Many potential methods of addressing
this

One is to use special znodes to pass
commands

Config ChangesConfig Changes
Targeted RestartsTargeted Restarts

Config ChangesConfig Changes
Targeted RestartsTargeted Restarts

Watch callbacks on /config portion of
component's znode hierarchy

Config ChangesConfig Changes
Targeted RestartsTargeted Restarts

Watch callbacks on /config portion of
component's znode hierarchy
Callbacks can pile up

E.g., delete one argument and add
another

Config ChangesConfig Changes
Targeted RestartsTargeted Restarts

Watch callbacks on /config portion of
component's znode hierarchy
Callbacks can pile up

E.g., delete one argument and add
another

Need a way of performing targeted
restarts

Connection LossConnection Loss
Zookeeper Session StatesZookeeper Session States

Connection LossConnection Loss
Zookeeper Session StatesZookeeper Session States

Need a policy about what to do when
connection to Zookeeper is lost

Watch callbacks do not persist

Connection LossConnection Loss
Zookeeper Session StatesZookeeper Session States

Need a policy about what to do when
connection to Zookeeper is lost

Watch callbacks do not persist

Zookeeper connections

Called a session
Represented as a state machine
Distinguishes connection lost or
interrupted

