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Introduction  
zookeepertcl ​provides a natural Tcl interface to the Apache Zookeeper API.            

Although incredibly versatile and powerful, the API has a surface-level simplicity that            
potentially suggests otherwise. To allay this potential misunderstanding, the Zookeeper project           
has documented a number of recipes utilizing the API for accomplishing some of the more               
common coordination tasks in distributed systems. These recipes, while decidedly valuable and            
important for highlighting the capabilities of Zookeeper, necessarily focus only on using its API              
profitably. The API and the recipes leave out the many crucial design decisions encountered by               
a developer trying to utilize one of the recipes as an essential component in a production system.                 
With this in mind, the discussion that follows aims to to bridge the gap between a generic recipe                  
and an actual implementation by detailing a concrete instance of a Tcl-driven, Zookeeper-based             
system.  

Scope of the System 
In order to contain the massive scope of this topic, this paper will consider only a limited,                 

but still useful system design for illustrating the implementation specifics left out of the general               
Zookeeper recipes. This system consists of an arbitrary number of nodes, or machines, and a               
number of components, or processes, that must all execute simultaneously for the system to              
function. It can be assumed that the number of components is always equal to or greater than the                  
number of nodes available. As a further restriction, each component is only allowed to run on a                 
single node at any given time. Not all faults can be handled, although the system is fault tolerant                  
to several common failures. In particular, the system cannot handle so-called "Byzantine"            
failures where nodes produce arbitrary failures. Instead, network failures and node crashes can             
be dealt with. Primarily, this system can handle some but not all nodes crashing and still remain                 
available, although perhaps with degraded service and with no consistency guarantees made            
since the internal operation of the components is not specified. 

On each of the nodes a daemon will run which communicates with Zookeeper using the               
zookeepertcl library and supervises the execution the system's components. It is of course             
possible to build in Zookeeper connectivity and application logic to each of the components              



individually, but for reasons to be discussed later on, particularly regarding intentional restarts,             
the daemon-wrapper approach is preferred. This Zookeeper-based daemon will use the leader            
election recipe in the Zookeeper documentation to determine which components it will run and              
supervise. In addition, the leader election recipe also furnishes it with a clear procedure for               
taking over leadership in the event that another node crashes. To summarize, the             
Zookeeper-based daemon runs on all the nodes in the system and is responsible for, through the                
leader election recipe, determining which components to run and providing fault tolerance when             
the leader on another node crashes. In other contexts, e.g., in Kafka, Raft or Zookeeper itself,                
leader election is used so that a single task requiring all the nodes in the system working                 
together, such as maintaining an append-only log, can grant one node a special role during that                
procedure. For the system described herein, however, the leader of a component designates a              
particular node responsible for running it and supervising it; it does not mean that the other nodes                 
are cooperating with it to help run the component, only that the other nodes can take over                 
running and supervising it if the current leader should fail. Lastly, configuration data for each               
component is stored in Zookeeper. This data specifies how the daemon should run the              
component, i.e., it contains the command line arguments needed to launch and then supervise it.  

Zookeeper Basics 
Zookeeper, a software project originally developed at Yahoo but currently managed by            

Apache is a server written in Java. It is meant to run as a high-availability service across a                  
cluster of machines and makes many coordination tasks in distributed systems simple to             
implement. Although there are many differences among distributed systems, there are many            
shared tasks that they tend to perform. For instance, queuing tasks for nodes to work on in                 
parallel, locking a resource so that only one process can write to it at any given time, agreeing on                   
the value of a shared variable, or electing one node as the leader of a task. Cleverly, rather than                   
providing the ability to carry out any of these tasks directly with pre-baked implementations,              
Zookeeper instead exposes a very simple, file-system like API that makes these tasks possible              
with a minimum of effort and with a tested and reliable implementation. 

Once a connection to Zookeeper has been made, so-called znodes can be created. znodes              
are analogous to a file: they have a unique path, relative to the root path ​/ ​, ​and contain both data                     
and metadata. The data portion of a znode can contain anything but is not meant to be large                  
(typically 1MB or less); the meta-data includes a version number (each modification to the znode               
increments the version), a number of timestamps, along with an access control list (ACL) for               
security purposes. Additionally, znodes come in two flavors: durable or ephemeral. Durable            
znodes last until they are explicitly deleted whereas an ephemeral znode only lasts for the               
duration of the connection that created it. Moreover, it is also possible to create a sequential                



znode whose path name, at creation time, is appended with a monotonically increasing sequence              
number, e.g., a request to create a sequential znode under ​/example_ would result in a znode                
whose full path is something like ​/example_00001​. 

Zookeeper's central data central data structure, the znode, can be interacted with through             
a small number of provided API operations. A znode can be created, its data and metadata can                 
be queried, its data can be changed, its existence can be questioned, the name of its child znodes                  
can be requested, and it can be deleted. Each of the aforementioned operations can also be                
associated with a watch callback. Watch callbacks fire once and only once whenever the              
operation they are defined on occurs. For instance, if a child watch is placed on a znode and a                   
child znode is created the watch will fire. It is important to keep in mind that once a watch fires,                    
it is no longer there and must be reset every time it needs to be in place. Also, watch callbacks                    
are like ephemeral nodes: they only remain in effect for the duration of the connection that set                 
them. All discussion below, though, assumes that any watch callbacks are properly reset when              
necessary. 

zookeepertcl Peculiarities 
Using the Zookeeper API in Tcl is straightforward. The ​zookeepertcl library           

provides a fast, efficient, easy-to-use and well documented wrapper over the Zookeeper C client              
included in the official Apache source code. Each of its commands supports both a synchronous               
and an asynchronous method of operation. Notably, though, the synchronous operations still use             
the Tcl event loop to pass data between the Zookeeper C library and zookeepertcl, so it will not                  
block events from being processed. Given, then, that the synchronous and asynchronous            
operations are functionally equivalent, either can be used for any situation depending on             
circumstance and taste. 

Despite its ease of use, there are some peculiarities around connection establishment that             
should be kept in mind when using the library. When connecting to Zookeeper, one of the                
required arguments is a timeout in milliseconds for establishing a connection. It might be              
assumed that if an initial connection is not established before the passed in timeout value, then                
zookeepertcl will throw an error or otherwise indicate that no connection could be made.              
That is decidedly not the case (unless the hostname cannot be resolved in which case an error is                  
thrown). Behind the scenes, the C client will continually attempt to reconnect to Zookeeper after               
no connection has been made within the allotted timeout period. This connection re-attempt loop              
is entered whenever a connection cannot be established whether or not an initial connection was               
ever made. Therefore, additional code needs to be written to check for the failure to obtain an                 
initial connection to Zookeeper. Even in synchronous mode, without this check for connection             



failure, ​zookeepertcl will try forever to obtain a connection. An example of the described              
connection failure check is found below. 

 
proc​ connect_to_zk ​{​host timeout​}​ ​{ 
    zookeeper​::​zookeeper debug_level none 
    try ​{ 
        zookeeper​::​zookeeper init zk ​$host​ ​$timeout​ \ 
          -​async​ connect_callback 
        ​after​ ​$timeout​ ​{​set​ ​::​zkConnected​ ​0​} 
        ​vwait​ ​::​zkConnected 
        ​return​ ​$​::​zkConnected 
    ​}​ on ​error​ ​{​args​}​ ​{ 
        ​return​ ​0 
    ​} 
} 
 
proc​ connect_callback ​{​args​}​ ​{ 
    ​set​ ​::​zkConnected​ ​[​expr​ ​{[​zk state​]​ eq ​"connected"​}] 
} 
 
set​ zkHostString​ ​"broken.host:​2181​" 
set​ zkTimeout​ ​3000 
 
if​ ​{[​connect_to_zk ​$zkHostString​ ​$zkTimeout​]}​ ​{ 
    # connection established 
    ​puts​ ​"Connected!" 
}​ ​else​ ​{ 
    # no connection obtained 
    ​puts​ ​"No connection" 
} 

Leader Election in zookeepertcl 
The fault-tolerant distributed system discussed herein relies on the leader election recipe            

provided in the official Zookeeper documentation. Rather than merely repeat it verbatim, a             
bare-bones implementation in Tcl is provided below with explanatory comments throughout. In            
this case, code speaks louder than words. 
 
# assume a successfully connected Zookeeper object named zk 
 



# step 1: Create znode z with path "ELECTION/n_" with both SEQUENCE 
and EPHEMERAL flags; 
# assume that the $electionRoot already exists  
set​ electionRoot​ ​[​file​ ​join​ ​/​ ELECTION​] 
set​ electionZnodePath​ ​[​file​ ​join​ ​$electionRoot​ ​"n_"​] 
set​ z​ ​[​zk create ​$electionZnodePath​ ​-​ephemeral​ ​-​sequence​] 
 
# step 2: Let C be the children of "ELECTION", and i be the sequence 
number of z; 
# zk children returns znode paths relative to that passed in as its 
znode parameter 
set​ c​ ​[​zk children ​$electionRoot​] 
 
# step 3: Find the leader 
proc​ election_cmp ​{​lhs rhs​}​ ​{ 
    ​set​ lhsNum​ ​[​scan​ ​[​lindex​ ​[​split​ ​$lhs​ _​]​ end​] %d] 
    ​set​ rhsNum​ ​[​scan​ ​[​lindex​ ​[​split​ ​$rhs​ _​]​ end​] %d] 
 
    ​if​ ​{​$lhsNum​ ​<​ ​$rhsNum​}​ ​{ 
        ​return​ ​-​1 
    ​}​ ​elseif​ ​{​$lhsNum​ ​==​ ​$rhsNum​}​ ​{ 
        ​return​ ​0 
    ​}​ ​else​ ​{ 
        ​return​ ​1 
    ​} 
} 
 
set​ sortedVotes​ ​[​lsort​ ​-​command​ election_cmp ​$votes​] 
set​ leader​ ​[​lindex​ ​$sortedVotes​ ​0​] 
 
# step 4: Watch for changes on "ELECTION/n_j", where j is the largest 
sequence number such that j < i and n_j is a znode in C; 
 
proc​ watch_next_node ​{​sortedVotes​}​ ​{ 
    # only matters if z is not the leader 
    # if z is the leader, do not need to 
    # watch anything to comply with the recipe 
    ​set​ zVotePosition​ ​[​lsearch​ ​$sortedVotes​ ​$z​] 
    ​set​ nodeToWatch​ ​[​lindex​ ​$sortedVotes​ ​[​expr​ ​{​$zVotePosition​ ​-​ ​1​}]] 
    ​if​ ​{​$nodeToWatch​ in ​$sortedVotes​}​ ​{ 



        ​set​ n_j​ ​[​file​ ​join​ ​$ELECTION​ ​$nodeToWatch​] 
        zk exists n_j ​-​watch​ election_change 
    ​} 
} 
 
proc​ election_change ​{​eDict​}​ ​{ 
    # figure out who should be the next leader 
    # if z is the new leader, take over 
    # otherwise watch the next n_j in the 
    # remaining znodes in C 
} 

Implementation Decisions 
With the preliminary explanations out of the way, the sections that follow discuss some 
implementation details left out of the leader election recipe.  These details are encountered by 
anyone attempting to build a version of the fault-tolerant distributed system discussed in this 
paper. 

Abdication 
With the basic system design in place, one of the first issues that comes up is that of                  

timing. Given that leader election for each component process will run on a multitude of hosts, it                 
is highly probable that a particular component's election will not occur at the same time on each                 
node. Instead, it is entirely possible and much more likely that the first node to run leader                 
election will win the election for every component. Depending on the size and resource              
consumption of each component, this might not be a problem, but it is certainly less than ideal to                  
have a single node running every constituent component in a distributed system. Instead, there              
needs to be some way of preventing this situation from occurring, and to ensure that each node                 
capable of doing so can participate in the running of processes. 

Undoubtedly a number of strategies might be employed to combat a single node from              
taking all of the work, although not every possibility will be explored here. Instead, a single                
strategy, named abdication, is suggested. Under abdication, when a node wins leadership of a              
component, a decision must be made as to whether this is actually desirable. In addition, every                
leader sets a watch callback on the children of its election znode and runs through the same                 
decision procedure whenever it fires. The decision on whether to retain leadership can take an               
arbitrary amount of information into account, but, for the sake of illustration, the simplest would               
be whether or not continuing as the leader retains a fair distribution of work across all the nodes                  



in the distributed system. If accepting leadership still retains fair distribution, then no             1

abdication is necessary. On the other hand, if accepting leadership would assign an unfair              
distribution of work, then leadership is abdicated. 

Abdicating leadership is a straightforward procedure but can have lots of side effects for              
other portions of the system, so it is necessary to detail it explicitly. During abdication the node                 
giving up leadership deletes its ephemeral, sequential znode created for voting (it was named ​z               
in the previous section's code). Doing this deletion will trigger a watch callback for one of the                 
other nodes and promote it to leader. After deletion, the newly abdicated node should once again                
put itself back in the running for this component by redoing election. However, this time, since                
another node has already taken leadership of the process, this will not reintroduce unfair              
distribution of work. Moreover, redoing election is important so that no component in the              
system is left without a leader when there are nodes available for taking on additional work. 

Intentional Restarts and Stops  
After addressing the potential for a minority of nodes to take all the available work and                

crowd out the ability of other machines in the system to contribute their compute resources,               
another salient issue that arises is how to handle intentional restarts and stops of components               
without giving up leadership. Without any modification to the leadership recipe, when restarts             
and stops occur this will signal to the rest of the system that the leader has died and needs to be                     
replaced. In the case of unintentional restarts and stops, this is exactly what is desired, but when                 
an admin wants a restart or stop to occur it is not always desirable to redo election. For instance,                   
throughout the course of a distributed system's execution, it is quite likely that there will be a                 
need for individual components, either in isolation or en masse, to have their code upgraded.               
When this happens (assuming a hot swap cannot occur), the overhead of leader election is often                
unwanted. Turning to the justification for intentional stops, it is possible that a particular              
component is malfunctioning, no matter what node it runs on. In that case, debugging is               
required, and, until a fix is discovered, no node should run the given component. Under this                
scenario when the component is stopped, no other node should attempt to run it, so it needs to be                   
stopped without triggering another election. 

Adding the ability to intentionally restart or stop a component without giving up             
leadership can certainly be done in a number of ways. Considering, though, the previously              
discussed strategy of abdication, a simple method suggests itself. Under abdication, every leader             
has a watch callback set on its child znodes that no other node will have. Therefore, a simple                  

1 Again, like with the amount of information used to decide on abdication, what constitutes fair distribution is open                   
to a multitude of definitions. For the sake of simplicity in the discussion that follows, assume that for the current                    
node, i.e., one that has won leadership of a component and is considering abdication, fair distribution is calculated as                   
number of components / number of nodes​. 



method of communicating something exclusively to the leader is to create a child znode under               
the root znode for component's election. Either the path or the data of this child znode can                 
contain instructions for the leader to restart or stop the component. In the case of a restart, when                  
the component is back up it can delete the child znode that told it to restart; in the case of a stop,                      
another mechanism, perhaps a signal handler, will be needed to get the component to resume               
execution, but once that occurs, the child znode, likewise, can be deleted. Given that a wrapper                
program has been recommended for each component, this method offers an easy way of              
intentionally starting or stopping any component in the system. For added protection, particular             
ACL schemes can be enforced for the child znodes used to restart or stop a component.  

Config Changes 
Provided the ability to restart a component without giving up leadership, it is then              

relatively simple to watch for config changes and selectively restart any affected components.             
This allows for seamlessly changing the config values in a running system without anything              
more than altering the data in a znode. Despite this genuine simplicity, a bit of caution is in                  
order. While the simplest implementation would have the watch callback immediately restart            
any component whose config changed, this eagerness is not advisable. For one thing, it is often                
common for multiple config znodes to be changed at once. With that being the case, a situation                 
to avoid is where one config znode changes, a watch callback fires, a component is restarted as a                  
result and, then, while it is restarting, another config znode changes and this process repeats. To                
prevent this, a delay should be introduced before a restart occurs, with the delay extended every                
time another change is detected.  

Zookeeper Connection Loss 
When a connection to Zookeeper has been lost for a node leading one or more               

components, it is fairly straightforward to figure out what needs to be done: all components               
currently being led need to be stopped immediately and the next node in line for leadership must                 
takeover. What it means for a connection to Zookeeper to be lost is not straightforward,               2

however. At any given time, a Zookeeper connection can be in one of several states: ​closed​,                
connecting​, ​associating ​, ​connected​, ​expired ​, ​auth_failed and ​unknown​.       
connected unambiguously means that a usable connection has been established; conversely,           
closed and ​expired unambiguously mean that the connection has been lost. As for the              

2 Nothing in distributed systems is easy and in this situation, extra care needs to be taken to ensure that the new                      
leader does not start running the component before the old leader shuts it down. Detailing methods for doing this is                    
outside the scope of this discussion, but, in general, this needs to be built into the component itself rather than part of                      
Zookeeper API operations. 



others, ​auth_failed relates to ACLs and does not affect the network connection although it              
will preclude performing any unallowed actions on nodes requiring an ACL with an auth              
scheme; ​unknown should be considered a broken connection and treated like ​closed and             
expired ​; lastly, ​associating and ​connecting ​represent an in-between state between           
connected​ and ​closed​ and require the most complicated handling. 

As mentioned in a previous section on peculiarities with ​zookeepertcl connection           
establishment, the official C client will always attempt to re-establish a connection as long as the                
hostnames in its connection string successfully resolve. Connections in the ​associating and            
connecting state, then, will remain there until the C client can successfully transition to the               
connected state. Typically a connection will transition to ​associating ​or ​connecting in             
a clustered Zookeeper setup when one of the servers cannot be reached. When this is a short                 
lived event, this is quite desirable and can help avoid the overhead of another election.               
Otherwise, if the network failure lasts for any substantial amount of time, having a component's               
leader go into an endless reconnect loop in a distributed system where all components need to be                 
running with minimal down-time is unacceptable. Instead, connections in those states need to be              
watched so that they do not loop indefinitely. To fix this, a Tcl ​after ​callback ​can be                   
scheduled to allow ​zookeepertcl some small amount of time to become connected. If the              
after callback detects that no connection has been made within the time allowed, then the               
component should be shut down and another node allowed to become the leader.   

Detecting Restart Loops 
Related to the prevention of a connection retry loop is the issue of detecting restart loops.                

While a distributed system with automatic failover is quite powerful, its strength, i.e., the ability               
to automatically respond to the loss of leadership, can become a crushing weakness without the               
proper precautions. Imagine the situation where a node with at least one component temporarily              
loses its connection to Zookeeper without obtaining a connection in sufficient time to retain              
leadership. When that happens, another node will take over leadership. However, it could             
happen that the new leader suffers the same fate as the old one, and that the same fate happens to                    
the next leader after that ad nauseam. Should this happen, any components on the failing leader                
will get passed around from one node to the next without ever being able to make progress.  

This situation could also occur in a number of other situations. For instance, it could               
happen to a component that, for whatever reasons, cannot run successfully on its current leader's               
machine. If the system chooses to give up leadership when a component stops unintentionally,              
then another node will take over leadership. But, assuming every other node is already at full                
capacity, then every other node other than the one where the component does not run properly                
would abdicate leadership once the broken node re-elects itself. Once again a situation arises              



where a component would get stuck in a restart loop. To prevent this situation, the system must                 
track when and how many times it attempts to assume leadership for a given component. If a                 
threshold number of attempts happen within a threshold amount of time, then a policy can               
enforce the proper behavior for the system based on the component itself and its role in the                 
system overall.  
 


