Popeye

Flight Tracking with SQLite



Keeping track of flights

 FlightAware needs a fast way to keep track of flights
actually in the arr.

* FlightAware receives input from thousands of sources,
and generates a consistent stream of flight events.

* This involves sorcery that will not be addressed here.

 These have to be turned into a view of what's currently In
the air.

* This view needs to be up to date and super fast to query.



Birdseye

* For most of history this has been kept in speedtables.
* This is Birdseye.
* This has worked pretty well, but has some problems.

* There's more flights all the time, and reading and
interpreting the stream of flight data in Tcl is getting tough.

* Speedtables are volatile, so frequent snapshots need to be
taken, and starting or restarting a Birdseye server is kind of
slow.



Controlstream

Flight events are transmitted, stored, and archived in a format
called "daystream”.

e https://www.tcl.tk/community/tcl2017/assets/talk95/Paper.pdf

Each flight event (position, arrival, departure, etc...) is a separate
line.

Each line are tab-separated key-value pairs.

First two pairs are a timestamp composed of seconds and a
sequence number.



Controlstream

e Example:

_Cc 1539354574 _s 10 typeposition ident WZZ71022 childID 126 _t b

adhoc 1 adsb_category A3 adsb_version 2 airground A alt 370

alt_ft 37000 alt_gnss 38250 alt_src A bitmask 0 clock 1539354569
combid 1539354574-615 facility fAT-42bdf278-a9ba-412b-8bbf-9452990c3965
feed ADEPT7 feed_c 1539354569 feed_s 2546flightlevel 370 fp

WZZ71022-1539302978-ed-0003:5 gSource feedgs 507 hSource feedheading 130

heading_magnetic 127.6 hexid 471Fe6l lat 55.91468 lon 12.35473 mach@.768
nac_p [...]

e /illions of these a second.



Controlstream

e The daystream feed containing the canonical view of flight
events is called "controlstream”.

e This is the "input” side of Birdseye



Trackstream

e Clients, like webservers, query birdseye using a protocol called
"trackstream”.

e |t's your basic query-response TCP/IP API, send a query and get a
one-line (maybe a very long line) reply.

* Queries actually Tcl and look kind of like like Speedtable search
queries.

 Trackstream was the inspiration for speedtables.

* Not quite the same, speedtable syntax is more database-like so
Birdseye translates queries.

* Replies are almost always Tcl lists, except where they're tab-
separated lists for some historic reason.



Eagle Eye

e Build one to throw away

e Eagle-Eye replaced Speedtables with a Cassandra cluster

e |nstead of having a bunch of Birdseye servers, and

trackstream queries, clients would connect to Cassandra
and make CQL queries.

e Massively multithreaded controlstream reader to populate
Cassandra.



Eagle Eye Problems

CQL is not as powerful as Speedtables API

* This was actually a surprise, it's less powerful than SQL, sure, but Speedtables is
not even pretending to be SQL.

Massive write multiplication. You need a separate copy of a table
for each "index".

Cassandra latency meant keeping a lot of duplicated state while
reading controlstream, which meant startup delays as this state
was restored.

Getting good performance for some queries required making
many CQL queries in parallel, and changes to the webservers.

Basically, Cassandra is not a great tool for a general query engine.



Popeye

Popeye replaced Speedtables with SQLite

SQLite is non-volatile, so a popeye can be shut down and
started up without delay.

SQL is far richer than Speedtables API (STAPI) or CQL

SQLite latency is low because there's no network I/0O

e Still higher than speedtables, but not enough to be a Kkiller.



Popeye - Input

* Popeye replaced Tcl controlstream reader with one in C++
e C++ is lower level than Tcl, but C++14 is pretty good.
* Plus, we have revived a nice C++ Tcl wrapper library.

e Shannon's talk will cover this.


https://github.com/flightaware/cpptcl

Popeye - Input

 Can't practically query SQLite for keeping track of state for
every flight data event, so some processing was simplified or
deferred to the back end.

* Maintaining the bounding box is handled in a C++ map.

* Projected positions are just stored and filtered Iin
trackstream.

e Some state needs to be maintained, but occasional SQLite
queries and caching results in maps is good enough.

* SO no massive state restore at startup.



Popeye - Input

e Generating SQL code for updating flight status was
actually taking significant CPU time in C++ string
operations.

e We walk the column list and build a tree, and only
generate new SQL when a new leaf node is created.

 The tree is brute force and never pruned because it
tops out at 1500-2000 unique statements.



Popeye - Output

e We already had experience converting Speedtables
queries to SQL

e "STAPI" - Speedtables API: maps queries to
trackstream-style sockets, or PostgreSQL database

e Doesn't actually use STAPI, because trackstream is not
exactly speedtables, just similar.

 Birdseye code was already translating trackstream to
speedtables, this was modified to generate SQL.



Popeye - Trackstream

e Example query

search -inAir both -originOrDestination KTPA -withPositionsSince 999999 -unblock

e Search flights, arriving or departing KTPA, with their track.
But don't show blocked (hidden) flights.



Popeye - Trackstream

* This generates some SQL

SELECT fp,[...],inflight.clock as clock,inflight.ident as ident FROM inflight LEFT
JOIN blocked on inflight.ident = blocked.ident WHERE (Corig = 'KTPA' OR dest =
"KTPA') AND inflight.clock > '1539346626"' AND lat IS NOT NULL AND blocked.clock IS

NULL ORDER BY clock DESC LIMIT 12800;

* Then popeye runs over the resulting flights and builds a
track for each aircratft:

SELECT 1lon, lat FROM positions WHERE fp = :fp AND clock > :withPositionsSince AND
(gs <> @ OR gs IS NULL) ORDER BY clock;



Popeye - Trackstream

e And that produces a Icl list

{i1dent SWA104 prefix {} type B737 suffix {} origin KDCA destination KTPA
departureTime 1539351420 faFlightID SWA104-1539149199-airline-0115 waypoints
{38.85 -77.04 [...] 27.98 -82.53} blocked @ timeout ok timestamp 1539351989
firstPositionTime 1539351463 lowLatitude 38.57555 lowlLongitude -77.46361
highLatitude 38.98889 highlLongitude -77.04103 longitude -77.46361 latitude
38.57555 groundspeed 381 altitude 198 altitudeFeet 19800 altitudeStatus -
updateType TZ altitudeChange D heading 206 arrivalTime 0 estimatedArrivalTime
1539358800 track {-77.041 38.872 -77.113 38.922 -77.164 38.973 -77.256 38.989
-77.35 38.977 -77.359 38.872 -77.344 38.764 -77.403 38.67 -77.464 38.576%}} [...]



Resulting Webpage

UAL1870 A319) XK

TPAIAH 10:31" 7




Popeye - Trackstream

* Then when you look at a particular flight:

info UAL735-1539101593-fa-0010

* Which uses a somewhat simpler query:

select * from inflight where fp = :fp order by clock desc limit 1;

* And produces:

ident UAL735 prefix {} type B738 suffix {} origin KTPA destination KIAD departureTime
1539352740 faFlightID UAL735-1539101593-fa-0010 waypoints {27.98 -82.53 [...] 38.95
-77.46} blocked @ timeout ok timestamp 1539353470 firstPositionTime 1539352818 lowLatitude
28.00000 lowLongitude -82.64333 highLatitude 29.06889 highlLongitude -82.52472 longitude
-82.64333 latitude 29.06889 groundspeed 436 altitude 235 altitudeStatus {} altitudeFeet
23500 updateType TZ altitudeChange C heading 353 estimatedArrivalTime 1539359820



Popeye - Trackstream

e And for the track:

get_track UAL735-1539101593-fa-0010

* This hits the position history table:

SELECT clock, 1lon, lat, gs, alt, alt_ft, altChar, updateType, coalesce(cid,'---"') cid, facility, altChange,
heading FROM positions WHERE fp = :fp ORDER BY clock;

* And produces:

11539352818 -82.53333 28.00000 169 8.00 {} TZ --- KTPA D {} 800} {1539352911 -82.52472 28.08389 217 39.00 {} TZ
--- KZJX C 5 3900} {1539352973 -82.52583 28.16639 275 69.00 {} TZ --- KZJX C 359 6900} {1539353035 -82.53806
28.24556 285 100.00 {} TZ --- KZJX C 352 10000} {1539353097 -82.55111 28.35778 322 115.00 {} TZ --- KZJX C 354
11500} {1539353159 -82.56167 28.46500 361 138.00 {} TZ --- KZJX C 355 13800} {1539353222 -82.57750 28.58417 398
160.00 {} TZ --- KZJX C 353 16000} {1539353284 -82.59194 28.69806 409 180.00 {} TZ --- KZJX C 354 18000}
{1539353347 -82.61111 28.82444 422 201.00 {} TZ --- KZJX C 352 20100} {1539353408 -82.62695 28.94333 426 219.00
{} TZ --- KZ3IX C 353 21900} {1539353470 -82.64333 29.06889 436 235.00 {} TZ --- KZJX C 353 23500} {1539353532
-82.66000 29.19167 439 250.00 {} TZ --- KZ3JX C 353 25000}



Resulting Webpage




Popeye - Trackstream

e But that track information is kind of oldschool, so now we do:

get_track_kv UAL735-1539101593-fa-0010

* Which uses a somewhat simpler query:

SELECT clock,lon,lat,gs,alt_ft,[...],nav_gnh,emergency FROM positions WHERE fp = :fp ORDER

BY clock

* Which produces:

{lon -82.53333 gs
{lon -82.52472 gs
{lon -82.52583 gs
{lon -82.53806 gs
{lon -82.55111 gs
{lon -82.56167 gs

169
217
275
285
322
3601

alt_ft
alt_ft
alt_ft
alt_ft
alt_ft
alt_ft

800 clock 1539352818 heading {} lat 28.00000 updateType TZ facility KTPA}
3900 clock 1539352911 heading 5 lat 28.08389 updateType TZ facility KZJIX}
6900 clock 1539352973 heading 359 lat 28.16639 updateType TZ facility KZJIX}
10000 clock 1539353035 heading 352 lat 28.24556 updateType TZ facility KZJIX}
11500 clock 1539353097 heading 354 lat 28.35778 updateType TZ facility KZJIX}
13800 clock 1539353159 heading 355 lat 28.46500 updateType TZ facility KZJIX}



Popeye - Trackstream

 That looks just like a nicer format, but it allows us to
Include more information in the result. Like this:

{lon -11.24672 gs 506 alt_ft 36000 pos_nic 8 alt_gnss 34800 clock 1539354680
speed_1as 282 heading 294 mach 0.844 lat 58.32431 vertRate_geom -64 vertRate 128
updateType TA facility fAT-52c¢781b2-d33b-40a5-b2b8-94051620eb4b pos_rc 186
heading_magnetic 293 adsb_version 0}

{lon -11.36881 gs 504 alt_ft 35975 pos_nic 8 alt_gnss 34775 clock 1539354710
heading 294 lat 58.35329 vertRate_geom 0 updateType TA facility fAT-52c781b2-
d33b-40a5-b2b8-94051620eb4b pos_rc 186 adsb_version 0}

{speed_tas 498 lon -11.52422 gs 504 alt_ft 36000 pos_nic 8 alt_gnss 34775 clock
1539354748 nav_alt 36000 heading 294 roll 0.0 lat 58.38991 nav_gnh 1013.0
vertRate_geom 0 updateType TA facility fAT-52c¢781b2-d33b-40a5-b2b8-94051620eb4b
pos_rc 186 adsb_version 0}

{lon -11.64468 gs 505 alt_ft 35975 pos_nic 8 alt_gnss 34750 clock 1539354778
heading 294 lat 58.41817 vertRate_geom 0 updateType TA facility fAT-52c781b2-
d33b-40a5-b2b8-94051620eb4b pos_rc 186 adsb_version 0}



Popeye - Trackstream

This is new "MODE S" information reported from the
autopilot, and includes things like the desired altitude
(hav_alt) and heading (nav_heading).

The information on the previous slide was from a 777 en-
route from London to Houston.

This has just been put into production.

It's much easier to make changes like this with a full SQL
database in our pocket.



