
Popeye

Flight Tracking with SQLite

Keeping track of flights
• FlightAware needs a fast way to keep track of flights

actually in the air.

• FlightAware receives input from thousands of sources,
and generates a consistent stream of flight events.

• This involves sorcery that will not be addressed here.

• These have to be turned into a view of what's currently in
the air.

• This view needs to be up to date and super fast to query.

Birdseye
• For most of history this has been kept in speedtables.

• This is Birdseye.

• This has worked pretty well, but has some problems.

• There's more flights all the time, and reading and
interpreting the stream of flight data in Tcl is getting tough.

• Speedtables are volatile, so frequent snapshots need to be
taken, and starting or restarting a Birdseye server is kind of
slow.

Controlstream
• Flight events are transmitted, stored, and archived in a format

called "daystream".

• https://www.tcl.tk/community/tcl2017/assets/talk95/Paper.pdf

• Each flight event (position, arrival, departure, etc...) is a separate
line.

• Each line are tab-separated key-value pairs.

• First two pairs are a timestamp composed of seconds and a
sequence number.

Controlstream

• Example:

_c 1539354574 _s 10 typeposition ident WZZ1022 childID 126 _t b
adhoc 1 adsb_category A3 adsb_version 2 airground A alt 370
alt_ft 37000 alt_gnss 38250 alt_src A bitmask 0 clock 1539354569

combid 1539354574-615 facility fAT-42bdf278-a9ba-412b-8bbf-9452990c3965
feedADEPT7 feed_c 1539354569 feed_s 2546flightlevel 370 fp

WZZ1022-1539302978-ed-0003:5 gSource feedgs 507 hSource feedheading 130
heading_magnetic 127.6 hexid 471F61 lat 55.91468 lon 12.35473 mach0.768

nac_p [...]

• Zillions of these a second.

Controlstream

• The daystream feed containing the canonical view of flight
events is called "controlstream".

• This is the "input" side of Birdseye

Trackstream
• Clients, like webservers, query birdseye using a protocol called

"trackstream".

• It's your basic query-response TCP/IP API, send a query and get a
one-line (maybe a very long line) reply.

• Queries actually Tcl and look kind of like like Speedtable search
queries.

• Trackstream was the inspiration for speedtables.

• Not quite the same, speedtable syntax is more database-like so
Birdseye translates queries.

• Replies are almost always Tcl lists, except where they're tab-
separated lists for some historic reason.

Eagle Eye

• Build one to throw away

• Eagle-Eye replaced Speedtables with a Cassandra cluster

• Instead of having a bunch of Birdseye servers, and
trackstream queries, clients would connect to Cassandra
and make CQL queries.

• Massively multithreaded controlstream reader to populate
Cassandra.

Eagle Eye Problems
• CQL is not as powerful as Speedtables API

• This was actually a surprise, it's less powerful than SQL, sure, but Speedtables is
not even pretending to be SQL.

• Massive write multiplication. You need a separate copy of a table
for each "index".

• Cassandra latency meant keeping a lot of duplicated state while
reading controlstream, which meant startup delays as this state
was restored.

• Getting good performance for some queries required making
many CQL queries in parallel, and changes to the webservers.

• Basically, Cassandra is not a great tool for a general query engine.

Popeye

• Popeye replaced Speedtables with SQLite

• SQLite is non-volatile, so a popeye can be shut down and
started up without delay.

• SQL is far richer than Speedtables API (STAPI) or CQL

• SQLite latency is low because there's no network I/O

• Still higher than speedtables, but not enough to be a killer.

Popeye - Input

• Popeye replaced Tcl controlstream reader with one in C++

• C++ is lower level than Tcl, but C++14 is pretty good.

• Plus, we have revived a nice C++ Tcl wrapper library.

• https://github.com/flightaware/cpptcl

• Shannon's talk will cover this.

https://github.com/flightaware/cpptcl

Popeye - Input
• Can't practically query SQLite for keeping track of state for

every flight data event, so some processing was simplified or
deferred to the back end.

• Maintaining the bounding box is handled in a C++ map.

• Projected positions are just stored and filtered in
trackstream.

• Some state needs to be maintained, but occasional SQLite
queries and caching results in maps is good enough.

• So no massive state restore at startup.

Popeye - Input

• Generating SQL code for updating flight status was
actually taking significant CPU time in C++ string
operations.

• We walk the column list and build a tree, and only
generate new SQL when a new leaf node is created.

• The tree is brute force and never pruned because it
tops out at 1500-2000 unique statements.

Popeye - Output
• We already had experience converting Speedtables

queries to SQL

• "STAPI" - Speedtables API: maps queries to
trackstream-style sockets, or PostgreSQL database

• Doesn't actually use STAPI, because trackstream is not
exactly speedtables, just similar.

• Birdseye code was already translating trackstream to
speedtables, this was modified to generate SQL.

Popeye - Trackstream
• Example query

search -inAir both -originOrDestination KTPA -withPositionsSince 999999 -unblock
""

• Search flights, arriving or departing KTPA, with their track.
But don't show blocked (hidden) flights.

Popeye - Trackstream

• This generates some SQL

SELECT fp,[...],inflight.clock as clock,inflight.ident as ident FROM inflight LEFT
JOIN blocked on inflight.ident = blocked.ident WHERE (orig = 'KTPA' OR dest =
'KTPA') AND inflight.clock > '1539346626' AND lat IS NOT NULL AND blocked.clock IS
NULL ORDER BY clock DESC LIMIT 12800;

• Then popeye runs over the resulting flights and builds a
track for each aircraft:

SELECT lon, lat FROM positions WHERE fp = :fp AND clock > :withPositionsSince AND
(gs <> 0 OR gs IS NULL) ORDER BY clock;

Popeye - Trackstream

• And that produces a Tcl list

{ident SWA104 prefix {} type B737 suffix {} origin KDCA destination KTPA
departureTime 1539351420 faFlightID SWA104-1539149199-airline-0115 waypoints
{38.85 -77.04 [...] 27.98 -82.53} blocked 0 timeout ok timestamp 1539351989
firstPositionTime 1539351463 lowLatitude 38.57555 lowLongitude -77.46361
highLatitude 38.98889 highLongitude -77.04103 longitude -77.46361 latitude
38.57555 groundspeed 381 altitude 198 altitudeFeet 19800 altitudeStatus -
updateType TZ altitudeChange D heading 206 arrivalTime 0 estimatedArrivalTime
1539358800 track {-77.041 38.872 -77.113 38.922 -77.164 38.973 -77.256 38.989
-77.35 38.977 -77.359 38.872 -77.344 38.764 -77.403 38.67 -77.464 38.576}} [...]

Resulting Webpage

Popeye - Trackstream
• Then when you look at a particular flight:

info UAL735-1539101593-fa-0010  

• Which uses a somewhat simpler query:

select * from inflight where fp = :fp order by clock desc limit 1;

• And produces:

ident UAL735 prefix {} type B738 suffix {} origin KTPA destination KIAD departureTime
1539352740 faFlightID UAL735-1539101593-fa-0010 waypoints {27.98 -82.53 [...] 38.95
-77.46} blocked 0 timeout ok timestamp 1539353470 firstPositionTime 1539352818 lowLatitude
28.00000 lowLongitude -82.64333 highLatitude 29.06889 highLongitude -82.52472 longitude
-82.64333 latitude 29.06889 groundspeed 436 altitude 235 altitudeStatus {} altitudeFeet
23500 updateType TZ altitudeChange C heading 353 estimatedArrivalTime 1539359820

Popeye - Trackstream
• And for the track:

get_track UAL735-1539101593-fa-0010

• This hits the position history table:

SELECT clock, lon, lat, gs, alt, alt_ft, altChar, updateType, coalesce(cid,'---') cid, facility, altChange,
heading FROM positions WHERE fp = :fp ORDER BY clock;

• And produces:

{1539352818 -82.53333 28.00000 169 8.00 {} TZ --- KTPA D {} 800} {1539352911 -82.52472 28.08389 217 39.00 {} TZ
--- KZJX C 5 3900} {1539352973 -82.52583 28.16639 275 69.00 {} TZ --- KZJX C 359 6900} {1539353035 -82.53806
28.24556 285 100.00 {} TZ --- KZJX C 352 10000} {1539353097 -82.55111 28.35778 322 115.00 {} TZ --- KZJX C 354
11500} {1539353159 -82.56167 28.46500 361 138.00 {} TZ --- KZJX C 355 13800} {1539353222 -82.57750 28.58417 398
160.00 {} TZ --- KZJX C 353 16000} {1539353284 -82.59194 28.69806 409 180.00 {} TZ --- KZJX C 354 18000}
{1539353347 -82.61111 28.82444 422 201.00 {} TZ --- KZJX C 352 20100} {1539353408 -82.62695 28.94333 426 219.00
{} TZ --- KZJX C 353 21900} {1539353470 -82.64333 29.06889 436 235.00 {} TZ --- KZJX C 353 23500} {1539353532
-82.66000 29.19167 439 250.00 {} TZ --- KZJX C 353 25000}

Resulting Webpage

Popeye - Trackstream
• But that track information is kind of oldschool, so now we do:

get_track_kv UAL735-1539101593-fa-0010

• Which uses a somewhat simpler query:

SELECT clock,lon,lat,gs,alt_ft,[...],nav_qnh,emergency FROM positions WHERE fp = :fp ORDER
BY clock

• Which produces:

{lon -82.53333 gs 169 alt_ft 800 clock 1539352818 heading {} lat 28.00000 updateType TZ facility KTPA}  
{lon -82.52472 gs 217 alt_ft 3900 clock 1539352911 heading 5 lat 28.08389 updateType TZ facility KZJX}  
{lon -82.52583 gs 275 alt_ft 6900 clock 1539352973 heading 359 lat 28.16639 updateType TZ facility KZJX}  
{lon -82.53806 gs 285 alt_ft 10000 clock 1539353035 heading 352 lat 28.24556 updateType TZ facility KZJX}  
{lon -82.55111 gs 322 alt_ft 11500 clock 1539353097 heading 354 lat 28.35778 updateType TZ facility KZJX}  
{lon -82.56167 gs 361 alt_ft 13800 clock 1539353159 heading 355 lat 28.46500 updateType TZ facility KZJX}

Popeye - Trackstream
• That looks just like a nicer format, but it allows us to

include more information in the result. Like this:

{lon -11.24672 gs 506 alt_ft 36000 pos_nic 8 alt_gnss 34800 clock 1539354680
speed_ias 282 heading 294 mach 0.844 lat 58.32431 vertRate_geom -64 vertRate 128
updateType TA facility fAT-52c781b2-d33b-40a5-b2b8-94051620eb4b pos_rc 186
heading_magnetic 293 adsb_version 0}  
{lon -11.36881 gs 504 alt_ft 35975 pos_nic 8 alt_gnss 34775 clock 1539354710
heading 294 lat 58.35329 vertRate_geom 0 updateType TA facility fAT-52c781b2-
d33b-40a5-b2b8-94051620eb4b pos_rc 186 adsb_version 0}  
{speed_tas 498 lon -11.52422 gs 504 alt_ft 36000 pos_nic 8 alt_gnss 34775 clock
1539354748 nav_alt 36000 heading 294 roll 0.0 lat 58.38991 nav_qnh 1013.0
vertRate_geom 0 updateType TA facility fAT-52c781b2-d33b-40a5-b2b8-94051620eb4b
pos_rc 186 adsb_version 0}  
{lon -11.64468 gs 505 alt_ft 35975 pos_nic 8 alt_gnss 34750 clock 1539354778
heading 294 lat 58.41817 vertRate_geom 0 updateType TA facility fAT-52c781b2-
d33b-40a5-b2b8-94051620eb4b pos_rc 186 adsb_version 0}

Popeye - Trackstream
• This is new "MODE S" information reported from the

autopilot, and includes things like the desired altitude
(nav_alt) and heading (nav_heading).

• The information on the previous slide was from a 777 en-
route from London to Houston.

• This has just been put into production.

• It's much easier to make changes like this with a full SQL
database in our pocket.

