CPPTCL

TCL EXTENSIONS IN C++

Shannon.Noe@FlightAware.com

Flight Aware

TCL Wiki page https://wiki.tcl.tk/13040
Thanks

Flight Aware

https://wiki.tcl.tk/13040

CPPTCL HISTORY
Created on SourceForge 2004-11-03 by Maciej Sobczak
When C++ was a pain
FlightAware started working with it in 2017

e Moved to github
https://github.com/flightaware/cpptcl

e Added some enhancements

e Implemented documentation as markdown

Flight Aware

TECHNICAL STUFF

Flight Aware

WHAT ARE TCL EXTENSIONS?

TCL extensions add new commands to TCL
interpreters with C

Flight Aware

DYNAMIC LOADING
making new programs at runtime

e Break a program into smaller parts.

e Re-assemble the parts at runtime.

e Combine different parts to make new programs at
runtime.

Flight Aware

WHAT IS A TCL EXTENSION?

e native platform instructions - compiled code

e in a shared library - a special file

e that call the TCL C API to extend the TCL interpreter
e implemented using dynamic loading

Flight Aware

USING C++ TO EXTEND TCL

Flight Aware

RATIONALE

e Addresses increasing performance problems.
m C++is close to the OS
= C++ memory management can be explicit
s C++ includes all multi-core techniques

e Provides high quality development platform.
= clang and libct++ are moving C++ rapidly
= Xcode
= valgrind

Flight Aware

MODERN C++

Reader-writer locks
Generalized lambda
functions

Move semantic
Unified initialization
autc and decltype
Lambda functions
cons t-E'!-:}_Z:I

Templates Fold expressions
constexpr if

STL including wiuctured binding declarations
containers and the
algorithms

Strings

/0 Streams

string view
Parallel algorithm of the STL
The filesystem library
y, std::optional, and

Multithreading and the
memory model

Regular expressions
Smart pointers
Hash tables

std::array

credit: www.modernescpp.com
Flight Aware

http://www.modernescpp.com/index.php/what-is-modern-c

PERFORMANCE PROCESS

e Profile: Find the hotspot in a program.

e Review: Check the TCL for simple performance
errors.

e Rewrite: Replace TCL code with C++ as needed.
= Sometimes with a TCL extension.
= Sometimes replace program entirely.

Flight Aware

CPPTCL

Flight Aware

Example C++ code and TCL code

#include <cpptcl/cpptcl.h>

std::string hello(std::string name) {
std::string r("hello ");
r.append (name) ;
return r;

CPPTCL_ MODULE (Hello, 1) {
1.def ("hello", hello, Tcl::usage("hello <string>"));

S tclsh
load ./libhello.so

hello joe
hello joe

o
o°
o
o

Flight Aware

COMPILE AND LINK

S g++ —-std=c++17 -I/usr/include/tcl8.6 \
—-shared —-fPIC -o libhello.so \
hello.cc \

—lcpptcl_static —-ltclstub8.6

Of course you pick your build system of choice

C++ community is mostly CMake *

Flight Aware

HOW CPPTCL WORKS
e Code generation is C++ templates
e Supports functions and methods of classes
e Supports zero to nine parameters

e Types: bool, int, long, double

e String types: std::string, char const *,
std::vector<char>

e C++ classes (pointers)

Flight Aware

Y
Flight Aware

CPPTCL_MODULE (Person, 1)
1

1.class_<Person>("Person", Tcl::1nit<std::string const &> ())
.def ("setName", &Person: :setName)
.def ("getName", &Person::getName) ;

Flight Aware

Y
Flight Aware

CPPTCL_MODULE C MACRO

CPPTCL_MODULE (NAME, INTERPRETER_ VAR)

// which generates the extension

// C entrypoint

extern "C" {

void S${NAME}_ Init (Tcl_Interp *) {
Tcl::interpreter ${INTERPRETER_VAR};

Flight Aware

ARRAYS

usling namespace Tcl;
vold helloArray (object const &name, object const &address)

cout << "Hello C++/Tcl! from array " <<
name ("first") .get () << " " << name ("last");

cout << "exists zip? " << address.exists("zip");
std::string state("state");
// Check for exists with if

1f (address (state)) {
cout << "state " << address(state) .asString() ;

Flight Aware

C++ CALLING TCL

i.eval (R" (proc strcat2 {argl arg2} { return "Sargl+S$Sarg2" })")
Tcl::Bind<string, string, string> strcatZ2("strcat2");
string val2 = strcat2("The", "End");

Flight Aware

