SOCKETSERVERTCL

Shannon.Noe at flightaware dot com

SOCKETSERVERTCL

Short review of TCP server programming

1. socket() // Creates a socket

2. bind() // Assign address

3. listen() // Join the network

4. accept() // Establish connection

Where to create worker processes?
Classic:
socket() bind() listen() accept() fork()
Pre-Fork:
socket() bind() listen() fork() accept()
SO_REUSEPORT:
exec()/fork() socket() bind() listen() accept()

Footnote

SO_REUSEPORT isin TCL TIP 465

OS HAS CONTROL WITH MULTIPLE
LISTEN FDS

Multiple accepts are scheduled by OS

SO_REUSEPORT is hashed to processes by
address.
Low number |IP addresses low scalability on Linux
For a good implementation see Cloudflare's blogs

How to get classic single accept with multiple
workers?

Exclusive locks and coordination - Apache
Proxy/Broker TCP in userspace
SCM_RIGHTS Apache mod and socketservertcl

What is SCM_RIGHTS?
Part of the Unix socket specification.

SCM_RIGHTS is a control message which can be
sent over SOL_SOCKET.

Provides the abllity to pass file descriptors.

SOCKETSERVERTCL

TCL extension which provides a means to send
and receive SCM_RIGHTS messages.

This makes is possible to pass TCL sockets.

Programming model follows TCL's core socket
command.

package require socketserver
: :socketserver: :socket server 9901
proc handle readable

proc handle accept {fd ipaddr port} {
fileevent $fd readable [list handle readable $£fd]
}

proc make worker {} {
set pid [fork]
if {$pid == 0} {
This is the child

: :socketserver::socket client handle accept
vwait done

}
}

make worker

vwalit done

proc handle accept {fd} {
fconfigure $fd -encoding utf-8 -buffering line -blocking 1
while {1} {
set line [gets $fd]
if {[string first "quit" $1line] != -1} {
break

}
puts $fd "[pid] Sline”

}

puts "client closing socket”

close $fd
Now that we have closed, we are ready for another socket

: :socketserver::socket client -port 8888 handle accept

socketservertcl

application

client 0S socketservertcl FIFO :
server client
fork() new client process
TCP Open
accept()
get new FD

[
»

TCP session

established

sendmsg (FD,SCM_RIGHTS)

recvmsg(FD,SCM_RIGHTS)

TCL FD Event

"HELO'

register
socketservertcl
callback

handle listen(
sock,ip,port)

A 4

A 4

”OK”

A

client 0S

sockets
server

ervertcl FIFO

close()
re-register
callback proc

socketservertcl
client

application

