Streaming replication
between database

engines via Icl
PostgreSQL to SQLite in real time

Where we are now

Caching PostgreSQL databases in Speed Tables
Super fast shared-memory database

Limited query abillity
* Only AND operations
 Only query a single table.

Kind of hammers the database fetching updates

e Even with clever multi-level code and incremental fetches

Switching to SQL.ite

Caching PostgreSQL databases in Speed-tables SQLite
e Karl's Tcl code for the cache adapted effectively to SQLite

Still pretty fast database
e Slower than Speed Tables for raw searches

 But much better indexing, and you can add indexes on the fly
e Potential for being much faster

Full SQL queries

But still hammering the server with update requests

But PostgreSQL has this
replication mechanism

* Replication slots watch the WAL (write-ahead log)
e Qutput plugin filters and reformats the output

e External application (pg_recvlogical) connects to DB and
dumps the replication stream to stdout

Created a new output plugin based on
the sample provided with PostgreSQL

e New output plugin - deltaflood - dumps all the change
records as key-value pairs in tab separated value format

 This is very easy to feed into Tcl arrays or dicts
e First [array set row [split $line "\t"]]

e Then [subst -nocommands -novariables ...] as needed

e http://github.com/flightaware/pg-deltaflood

http://github.com/flightaware/pg-deltaflood

Deltaflood format

_table =zzz _xid 88628916 _action delete a fox61l
_table zzz _xid 88628916 _action replace a fox49
_table =zzz _xid 88628916 _action update a fox61 b hen62
_table zzz _xid 88628917 _action update a foxl7 b hen60
_table =zzz _xid 88628918 _action insert a fox62 b henl7
_table zzz _xid 88628919 _action update a fox99 b hen38
_table =zzz _xid 88628920 _action delete a fox54
_table zzz _xid 88628920 _action replace a foxll
_table 2zzz _xid 88628920 _action update a fox54 b hen93
_table =zzz _xid 88628921 _action update a fox24 b hen78
_table zzz _xid 88628922 _action update a fox68 b hen76
_table zzz _xid 88628923 _action update a fox83 b hen51
_action:

insert Insert a row in the database
delete Delete a row from the database
replace tag row for replacement
update Update a row in the database

An extra level of staging

 We will have multiple hosts following the replication
stream

e We want to avoid having multiple hosts running separate
replication requests
e Especially since each replication request requires a separate slot.
* And having a host down would cause PostgreSQL to leak memory.

* We need to be able to restart at a given point in time
when a host comes back up.

Daystream

Flightaware uses an event stream format called
"daystream” extensively.

Stored in daystream files, read through the universal
daystream client library

Files may be local or streamed from another host

Each line is tagged with a timestamp and sequence number

e Client library supports starting at any given timestamp and sequence

Each line is tab-separated key-value pairs - convenient

(0 T © TN © T © RN © NN @ N © N © N © I @ NENN @ N © T o J o I o NN 0 IR 0 JNN 0 RN 0 BN ¢!

1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507200
1507507201
1507507201

|
n n n n n n nh n n n n n n n n n n n n n

0 4 o6 U1 W N P O

H O R B R B B R B 2o
N o U WN R o

Daystream

_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table
_table

Z22Z27Z
Z2z22Z
222
222
zZ2z2Z
ZZ22Z
Z2z22Z
222
Z22Z27Z
Z2z22Z
ZZ22Z
222
zZ2z2Z
Z22Z27Z
Z2z22Z
222
Z22Z27Z
zZ2z2Z
ZZ22Z

222

xid
xid
xid
xid
xid
xid
xid
xid
xid
xid
xid
xid
xid
xid
xid
xid
xid
xid
xid

xid

88628908
88628909
88628910
88628911
88628912
88628913
88628914
88628915
88628916
88628916
88628916
88628917
88628918
88628919
88628920
88628920
88628920
88628921
88628922
88628923

_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action
_action

update
update
update
update
update
update
delete
update
delete
replace
update
update
insert
update
delete
replace
update
update
update
update

o 0 9 2 9 2 0 9 0 9 2 00 O 0O O O D OO O O

fox47
fox97
fox47
fox97
fox15
fox7

fox70
fox53
fox61
fox49
fox61l
fox17
fox62
fox99
fox54
foxll
fox54
fox24
fox68
fox83

o o oo oo ooo

o o o o

o o o o

hen30
henll
hen95
hen38
hen51
hen94

hen83

hen62
hen60
henl?7
hen38

hen93
hen78
hen76
hen51

An extra level of staging

e This is basically deltastream output, plus the timestamp
e So now we have our extra level of staging

e Each host can restart reading where they left off

 Only need to have one replication slot in the database

 Missing hosts don't cause the database to grow

pg_sqlite

A new command in Pgtcl, pg_sqlite, that can be used to rapidly
copy data from PostgreSQL to Sqlite3.

set res [Spgdb exec "SELECT * FROM TABLENAME; "]
pg sqlite $sglitedb import postgres result S$res \
-into tablename \

—as {col type col type ...} \
-pkey {col col col}
pg result $res clear

Optional, only included if Tcl is built with sqglite3 support

We can rapidly initialize the database using pg_sqlite

http://github.com/flightaware/Pgtcl

e generic/pgtclSqlite.c

http://github.com/flightaware/Pgtcl

Deltastream and deltamirror

Straight Tcl applications

e Deltastream reads pg_recvlogical output and feeds it
directly into daystream

e Literally just concatenates time, sequence, and the line read from
pPg_recvlogical

e Deltamirror reads from daystream and writes the output
into sqlite3

 Maintains a timestamp updated at the end of each transaction, so the
replication can be cleanly continued from daystream after a restart.

Bringing It all together

Read the PostgreSQL schema and save it in PostgreSQL tables for
future reference.

Set up the replication slot to replicate the tables we're interested in
Start up deltastream to create the daystream files

Then for each new host:

e Populate the sqlite3 tables using pg sqlite ..
import postgres result

e Start replication from daystream files using deltamirror

One more thing

 (Getting the sqglite3 database handle from the Tcl sqglite3
database command requires a bit of parkour

e As far as | could determine there's no formal API for this.

e |uckily the clientData field for the command has the database
object as the first element.

struct SqgliteDb {

sglite3 *db; /* The "real" database structure. MUST BE FIRST */
// other stuff we don't look at...

e For safety's sake we need to make sure this is a valid pointer
e First create a known valid sqlite3 command and save off its objProc

* Only proceed if the command we're passed uses the same objProc

