
Streaming replication
between database

engines via Tcl
PostgreSQL to SQLite in real time

Where we are now

• Caching PostgreSQL databases in Speed Tables

• Super fast shared-memory database

• Limited query ability

• Only AND operations

• Only query a single table.

• Kind of hammers the database fetching updates

• Even with clever multi-level code and incremental fetches

Switching to SQLite
• Caching PostgreSQL databases in Speed Tables SQLite

• Karl's Tcl code for the cache adapted effectively to SQLite

• Still pretty fast database

• Slower than Speed Tables for raw searches

• But much better indexing, and you can add indexes on the fly

• Potential for being much faster

• Full SQL queries

• But still hammering the server with update requests

But PostgreSQL has this
replication mechanism

• Replication slots watch the WAL (write-ahead log)

• Output plugin filters and reformats the output

• External application (pg_recvlogical) connects to DB and
dumps the replication stream to stdout

Created a new output plugin based on
the sample provided with PostgreSQL

• New output plugin - deltaflood - dumps all the change
records as key-value pairs in tab separated value format

• This is very easy to feed into Tcl arrays or dicts

• First [array set row [split $line "\t"]]

• Then [subst -nocommands -novariables ...] as needed

• http://github.com/flightaware/pg-deltaflood

http://github.com/flightaware/pg-deltaflood

Deltaflood format
_table zzz _xid 88628916 _action delete a fox61
_table zzz _xid 88628916 _action replace a fox49
_table zzz _xid 88628916 _action update a fox61 b hen62
_table zzz _xid 88628917 _action update a fox17 b hen60
_table zzz _xid 88628918 _action insert a fox62 b hen17
_table zzz _xid 88628919 _action update a fox99 b hen38
_table zzz _xid 88628920 _action delete a fox54
_table zzz _xid 88628920 _action replace a fox11
_table zzz _xid 88628920 _action update a fox54 b hen93
_table zzz _xid 88628921 _action update a fox24 b hen78
_table zzz _xid 88628922 _action update a fox68 b hen76
_table zzz _xid 88628923 _action update a fox83 b hen51

_action:
insert Insert a row in the database
delete Delete a row from the database
replace tag row for replacement
update Update a row in the database

An extra level of staging

• We will have multiple hosts following the replication
stream

• We want to avoid having multiple hosts running separate
replication requests

• Especially since each replication request requires a separate slot.

• And having a host down would cause PostgreSQL to leak memory.

• We need to be able to restart at a given point in time
when a host comes back up.

Daystream
• Flightaware uses an event stream format called

"daystream" extensively.

• Stored in daystream files, read through the universal
daystream client library

• Files may be local or streamed from another host

• Each line is tagged with a timestamp and sequence number

• Client library supports starting at any given timestamp and sequence

• Each line is tab-separated key-value pairs - convenient

Daystream

_c 1507507200 _s 0 _table zzz _xid 88628908 _action update a fox47 b hen30
_c 1507507200 _s 1 _table zzz _xid 88628909 _action update a fox97 b hen11
_c 1507507200 _s 2 _table zzz _xid 88628910 _action update a fox47 b hen95
_c 1507507200 _s 3 _table zzz _xid 88628911 _action update a fox97 b hen38
_c 1507507200 _s 4 _table zzz _xid 88628912 _action update a fox15 b hen51
_c 1507507200 _s 5 _table zzz _xid 88628913 _action update a fox7 b hen94
_c 1507507200 _s 6 _table zzz _xid 88628914 _action delete a fox70
_c 1507507200 _s 7 _table zzz _xid 88628915 _action update a fox53 b hen83
_c 1507507200 _s 8 _table zzz _xid 88628916 _action delete a fox61
_c 1507507200 _s 9 _table zzz _xid 88628916 _action replace a fox49
_c 1507507200 _s 10 _table zzz _xid 88628916 _action update a fox61 b hen62
_c 1507507200 _s 11 _table zzz _xid 88628917 _action update a fox17 b hen60
_c 1507507200 _s 12 _table zzz _xid 88628918 _action insert a fox62 b hen17
_c 1507507200 _s 13 _table zzz _xid 88628919 _action update a fox99 b hen38
_c 1507507200 _s 14 _table zzz _xid 88628920 _action delete a fox54
_c 1507507200 _s 15 _table zzz _xid 88628920 _action replace a fox11
_c 1507507200 _s 16 _table zzz _xid 88628920 _action update a fox54 b hen93
_c 1507507200 _s 17 _table zzz _xid 88628921 _action update a fox24 b hen78
_c 1507507201 _s 0 _table zzz _xid 88628922 _action update a fox68 b hen76
_c 1507507201 _s 1 _table zzz _xid 88628923 _action update a fox83 b hen51

An extra level of staging

• This is basically deltastream output, plus the timestamp

• So now we have our extra level of staging

• Each host can restart reading where they left off

• Only need to have one replication slot in the database

• Missing hosts don't cause the database to grow

pg_sqlite
• A new command in Pgtcl, pg_sqlite, that can be used to rapidly

copy data from PostgreSQL to Sqlite3.

set res [$pgdb exec "SELECT * FROM TABLENAME;"]
pg_sqlite $sqlitedb import_postgres_result $res \

-into tablename \
-as {col type col type ...} \
-pkey {col col col}

pg_result $res clear

• Optional, only included if Tcl is built with sqlite3 support

• We can rapidly initialize the database using pg_sqlite

• http://github.com/flightaware/Pgtcl

• generic/pgtclSqlite.c

http://github.com/flightaware/Pgtcl

Deltastream and deltamirror

• Straight Tcl applications

• Deltastream reads pg_recvlogical output and feeds it
directly into daystream

• Literally just concatenates time, sequence, and the line read from

pg_recvlogical

• Deltamirror reads from daystream and writes the output
into sqlite3

• Maintains a timestamp updated at the end of each transaction, so the

replication can be cleanly continued from daystream after a restart.

Bringing it all together
• Read the PostgreSQL schema and save it in PostgreSQL tables for

future reference.

• Set up the replication slot to replicate the tables we're interested in

• Start up deltastream to create the daystream files

• Then for each new host:

• Populate the sqlite3 tables using pg_sqlite …
import_postgres_result

• Start replication from daystream files using deltamirror

One more thing
• Getting the sqlite3 database handle from the Tcl sqlite3

database command requires a bit of parkour

• As far as I could determine there's no formal API for this.

• Luckily the clientData field for the command has the database
object as the first element.

struct SqliteDb {
sqlite3 *db; /* The "real" database structure. MUST BE FIRST */
// other stuff we don't look at...

};

• For safety's sake we need to make sure this is a valid pointer

• First create a known valid sqlite3 command and save off its objProc

• Only proceed if the command we're passed uses the same objProc

