Introduction to the HAMT:
Opportunity for Tcl

2017 Tcl Conference
Don Porter
Tcl/Tk Release Manager

y 4

Hash Maps in Tcl

Dictionaries
Array variables

Name lookups (commands, vars, etc.)

Much much more...

- Most make use of Tcl HashTable.
e Customizable

Hash Map — Gilant Bucket Array

* Define Hash: Key — index
- Efficient
- Range evenly distributed over indices

Search bucket [Hash(key)] for key

64

Hash Map — Tcl HashTable

Search bucket [Hash(key) & mask] for key

0) 23

< < |

Hash Map — Hash Trie

Follow Hash(key) path to leaf storing key

0 1

Hash Map — Hash Trie

Eliminate empty buckets and paths

0 1

[
[
. [\\

I [\\

Hash Map — Hash Trie

Store hashes — shorten paths w/o branches

Hash Map — Hash Trie

Store node IDs — shorten paths w/o branches

Hash Array-Map Trie (HAMT)

Structure nodes as array maps

0011

1100

0110

1100

Array Map Encoding

* Two bits encoding bucket leaf children
- Bitnis set — child n is a bucket

 Hash and leaf pointer are stored in array
* Two bits encoding subnode children

- Bitnis set — child n is a subnode
» Pointer to subnode is stored in array

Removal Operation

am. AN
e -

Removal Operation —
Tcl _HashTable (Destructive)

,// - ™~
y N\
/ N\
/ \
\ /
AN /
N -
~_ _

Removal Operation — HAMT
(non-destructive)

OLD

0011

1100

NEW

0110

] 1100

0110

IMMUTABILITY

* Values as Read-only structures
 Matches value semantics of Tcl

» Alternative to Copy on Write

- CoW is a discipline to implement immutable
values out of mutable foundations

...oNn Steroids

* Presented as binary tree

- Two two-bit encoding maps per node
- Easy to draw and explain
- Inessential

* Implemented as 64-ary tree
- Two 64-bit encoding maps per node

- Shallow, wide trees — few hops in lookup
- Depth of 11 covers entire 16 exbibyte capacity

Demo: dict VS hamt

% set data [Imap _[Irepeat 20000 {}] tcl::mathfunc::rand]
% set d [dict create {*}$data]

% time {foreach {k v} $data {set d [dict remove $d $k]}}
-> 23839420 microseconds per iteration

% set h [hamt create {*}$data]
% time {foreach {k v} $data {set h [hamt remove $h $k]}}
-> 77113 microseconds per iteration

% set d [dict create {*}$data]
% time {foreach {k v} $data {dict unset d $k}}
-> 28610 microseconds per iteration

The Enemy

Merge Demo

% time {set d [dict merge $d1 $d2]}
- 681783 microseconds per iteration

% time {dict merge $d $d}
- 1032838 microseconds per iteration

% time {dict merge $d $d1}
- 927085 microseconds per iteration

% time {set h [hamt merge $h1l $h2]}
- 294936 microseconds per iteration

% time {hamt merge $h $h}
- 65 microseconds per iteration

% time {hamt merge $h $h1l}
- 218641 microseconds per iteration

More dict VS hamt

For one hashmap, hamt uses more memory.

For set of related hashmaps, will use less.
Operation speeds are competitive. (oom)
Avoids copy catastrophe by design

Still prototype quality

- Known improvement avenues

Immutabllity benefits...

Immutable Hashmap Benefits

Read-only values share easily

- Think “threads”

Keep useful checkpoints

— Think built-in command set of an interp.
Controlled teardowns

- Think namespace delete

Caching and Epochs

- No epoch for something that does not change
Scaling?

How can | try It?

* Branch dgp-refactor in the Tcl fossil
repository.

- https://core.tcl.tk/tcl
* [hamt info] reports interesting details.

e Comments welcome.

Relaxed Radix Balance (RRB)
Tree
« HAMT : Hashmap :: RRB : Sequence
— Think “list”
- Think “string” (list of characters)

* Foundation of the Clojure Vector
o Stay Tuned!

Conclusions

Protoype HAMT implementation underway
- Basic functions complete.

Initial testing shows promise

- Not yet a clear failure.

Immutable structures are useful tools.

Other immutable structure opportunities.
Further work Is needed.

	The (Active) State of Tcl
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

