
tclrmq: A pure Tcl library for RabbitMQ
Garrett McGrath

Introduction

tclrmq, a new library for using the Advanced Message Queueing Protocol (AMQP) v0.9.1
with RabbitMQ, provides a pure Tcl interface for this flavor of distributing messaging.  Currently
the open-source Tcl ecosystem provides support for several varieties of distributed messaging,
e.g.,  kafkatcl and  tclzmq, but nothing regularly maintained or feature-full for AMQP despite it
being one of the most common, stable and well known options.  With the creation of this library,
though, that is now no longer the case.  Although tclrmq is tightly coupled with RabbitMQ, this
is no real limitation: its stability, long history, extensions, and active upkeep make it one of the
most trusted open source products, and the open source leader for AMQP.  Tcl applications can
now make use of it without relying on any external bindings or C libraries.  With a standard 8.6.*
distribution, Tcl is now capable of utilizing AMQP in any application.

Why Pure Tcl

When designing a library in Tcl, its high quality C API and the availability of widely used
and long developed open source C code for many tasks often makes the writing of a C extension
the  best  and  most  obvious  solution.   Hearkening  back  to  Tcl's  original  use  case,  in  these
situations, it is clear that right thing to do is to use Tcl as a wrapper over low level code.  The
performance and ease of development that results commonly renders the writing of a pure Tcl
library from a scratch an infeasible task.  However, in the case of RabbitMQ, the primary C
library rabbitmq-c leaves a bit to be desired.  For one, it is still technically in beta, although it has
been around for several years.  In addition, it is not possible to use it out of the box in a non-
blocking way.  One can potentially combine its use with an additional library for asynchronous
networking like libevent, but this adds further and unnecessary complexity.  Given these reasons,
tclrmq is written from scratch, completely in Tcl, supporting all available RabbitMQ protocol
extensions and only with non-blocking, asynchronous operations.

Getting Started

Getting  work  done  with  tclrmq requires  the  use  of  three  simple  TclOO  classes:
Connection,  Login  and  Channel.   The  Connection  class  is  responsible  for  establishing  the
network connection with the RabbitMQ server, both standard and using TLS, while Login, which
is a helper class for the connection, encapsulates the necessary authentication mechanism for
making the connection.   Once connected, the Channel class is the main workhorse of the library.
The  vast  majority  of  methods  are  defined  in  this  class:  all  logical  operations  supported  by
RabbitMQ's implementation of the AMQP v0.9.1 standard are found here.  Every Channel object
refers to a particular Connection, and multiple channels can be defined for a given connection if
desired by the application creator.  Example usage is as follows:  

package require rmq



# Arguments: -user -pass -vhost
# All optional and shown with their defaults
set login [Login new -user "guest" -pass "guest" -vhost "/"]

# Pass the login object created above to the Connection
# constructor
set conn [Connection new -host rabbitmq.domain.com -port 5672 
-login $login]

# Set TLS options: all available options shown
$conn tlsOptions -cafile "/path" -certfile "/path" -keyfile 
"/path" -require 1

# Set a callback for when the connection is ready to use
# which will be passed the connection object
$conn onConnected rmq_conn_ready
proc rmq_conn_ready {conn} {
    puts "Connection ready!"
    # with the connection established, create a channel
    set rChan [Channel new $conn]
}

# Initiate the connection handshake and enter the event loop
$conn connect
vwait die

Setting Callbacks

Central to the design of  tclrmq is the use of callbacks.  Since everything in the library
happens asynchronously, it is necessary to set procs for responding to events as they occur.  Most
callbacks are invoked on  Channel objects,  but  Connection  objects also provide them for the
opening and closing of a connection and whenever an error occurs.  Connection objects provide
callbacks  for  the  same  three  events,  but  also  for  every  AMQP method  documented  in  the
standard that returns information back to a client application.  The electronic proceedings for
tclrmq  documents  all  arguments  required  for  every  possible  callback proc,  including all  the
relatively obscure methods that do not find use in the majority of applications.  However, the two
most common tasks—publishing and consuming—can be accomplished quickly and with little
code.  Example usage for both these tasks is as follows:

set conn [Connection new]
$conn onConnected connected_rmq

proc connected_rmq {conn} {



    set rChan [Channel new $conn]
    $rChan onOpened publish_to_queue
}

# the channel object created above is passed in
proc publish_to_queue {ch} {
    set pubFlags [list $::rmq::PUBLISH_MANDATORY]
    set pubProps [dict create content-type text/plain]
    set data "textual content"
    # content, exchange name, routing key, flags, properties
    $ch basicPublish $data "tcl_test" hello $pubFlags $pubProps
}

# consuming needs to be setup after a channel has been defined
and fully opened
proc setup_consuming {ch} {
    $ch basicConsume consumer_proc
}

proc consumer_proc {ch methodD frameD data} {
    # do some work with the data consumed and 
    # send an acknowledgment
    $ch basicAck [dict get $methodD deliveryTag]
}

Limitations and Future Work

Currently the only protocol supported by the library is AMQP v0.9.1.  This is the most
stable version of the protocol in widespread use.  It will be supported by the maintainers of
RabbitMQ for the foreseeable future.  Although AMQP v1.0 has been out since 2011, it breaks
functionality  with  v0.9.1  and  earlier  versions  and  implements  an  entirely  separate  type  of
protocol that focuses entirely on the messaging layer.  Therefore, this library does not make an
attempt to support it, nor has it been designed with the ability to easily adapt the code-base to
v1.0.   Other  protocols  supported  by  RabbitMQ  such  as  STOMP and  MQTT are  also  not
supported.  Unlike AMQP v1.0, though, future work on these is a possibility and could easily
leverage the current code without requiring a substantial redesign.

Future work will focus primarily on improving the reliability of the library.  One of the
main tasks for this area of improvement is to increase the number of test cases available.  In the
AMQP standard, a number of test scenarios are detailed.  Every one will be eventually covered
by   forthcoming  commits.   Supplying  code  for  the  complete  suite  of  test  scenarios  will
dramatically increase the current code coverage.  In addition, a more formal benchmarking of the
library's  performance is  part  of upcoming work.  The benchmark will  measure the speed of
producing and consuming under a variety of workloads.  


