Practical Example of Tcl Command
Design in a Qt/C++ Graphical Application

Tony Johnson
Mentor Graphics, a Siemen’s Company

tony johnson@mentor.com

Paper Motivation

Why write this paper?

* Explain why creating commands to control Graphical Applications is
Important.

* Provide an example for others to follow in order to create such a
command in their GUI.

* Describe why Tcl is a particularly good choice for this purpose
regardless of GUI implementation language.

* Offer advice on how to design commands in a way that is user
friendly, easily extendable and consistent as they grow over time.

Tcl Command Background and Motivation

Why create a Tcl Command to control a GUI?

* Testing

* User Control

* 34 Party Access
e Save/Restore

e Expandability

ali ain 32 169 ® 6 ®
File Edit View Transcript Tools Window Help
* y "B SHEE 7 PS8 B QoA [Mem [-[Fo 7] [anyEdge [« » [0 Elws -
EDesign “HAE | dutsv #) Variables = 10) - tic o6 =
T le M 247 nodule dut(= — T Ea— tic G %
25 input logic CLK - ! - . Active Schematic : top.dutAl ®E
G @ top :(top) 26 input logic VALID, |Nams Type |Valuw File Edit View Wave Options Help t
ER™ 27 output logic READY, ADOR[31:0 3 = T — = - —H
o ab :(andd) | 28 input logic W, ;IT NIDTH[3:“% inpu tw_lre - = S 1Tl A EEEE » 5w [Mnen p= Y
o al :(and4) | 29 input logic [31:0] ADDR , Tk [31:0] para?e er
o a2 :(anda) | 30 input logic [31:0] DATAI, // Input to the a_K count i::gggermre
1: 7 !
o ai .(angi) g;l | ?L‘\tput logic [31:0] DATAD // Output from +1 TDATAT[31:0] input wire
g :5 'E:::Mg 33 ! w- DATAD[31:0] output logic
. integer
g :gi gz::gig gg bit execute_dollar_display; . READY cutput logic
o a8 :(anda) | 36 paraneter BIT_WIDTH = 8; RESET begin
[add_offset | 37 5 S‘TAT?BMB:L o input tw1re
" i 1 N iy . 1001 : parameter
%I Eu?fﬁf:gt_ :g logic [31:0] mem[©:'hfff]; // Only 100-100 STATE1[31:0] parameter
. . STATEZ[31:0] parameter
g Eggg_iﬂzgz 32 reg fast_clk; STATE3[31:0] parameter
o cl :(cubes | 420 always begin gﬂgg[gig] parameger
O chains :(d | 43 #10; fast_clk = ©; STATE6[31:BJ parameter
[chainsz :(1 | 44 #10; fast_clk = [:] parameter
O dddl :(dad | 45 L end STATE7[31:8] parameter
o factorial 46 1 VALID input wire
o m_sin_calc | 47 int CLK_count = @; gg i:::g:::gg
g ﬂ*[gﬂ}ﬂ 32 int fast_CLK_count = ©; 2 Instance W
[} ssl:(seti_; 50 logic rw; a3 instance
O wt :(worm_ | 51 logic [31:0] addr; & O Fs @6 © [@ O WaveO - Current ©® ®
[0 Wt_notconn gg logic [31:0] data; e el aveo - Current s
i) rE_LI,t dit')(‘ 54 logic [8:8] data rot13; File Edit View (Options Help File Edit WView Options Tools Window
dutBl : (dut 55 T
8 fute :(dut% 56 logic [7:0] offset = 'di3; ¢ HE@REQHE »| 2800 GEREQHEEHMN AR FAd o » W REw
interfaceAl 57 logic [BIT_WIDTH-1:0] sum; =) o 180000
S interfaceA? : | 58 logic [BIT_WIDTH-1:0] sum2; (& Hguald dase Vvalues-C1
o interfaceBl : | 59 logic co, GROUP® GROUPO
g interfaceBz : | 60 logic co2; | ‘
g e ctpar) | 61 et - 1. chains?.1eds5[6:6] AEETIECTTEC T TR ORCOERIRERL]
if1e ¢ if bit secure_hw = 0; .
B Fif et | | 6 o-cd7_inst, led[6:0] Ry s
- 64 L GROUPE GROUPG
65 logic [3:0]digit, dd_off
66 logic [3:0]digit2;
67 logic [3:0]delayed_digit; add_of
68 logic [3:0]delayed_digit2;
- S . 9 top.qutk? (T e
(8 G5 G

m Transcript
Visualizer> wave grid -help

Usage: wave grid [-clear] [-help] [-from <value>] [-to <value>] [-regx

Examples:
wave grid .top.dut.reset
wave grid -clear
wave grid -start 1008ns -end 2008ns -int 108ns
wave grid -start 100@ns -end 2000ns top.dut.rdy
wave grid -from @ -to fFfFf* -regx top.dut.addr
wave grid -from xxxxxxxx -to * top.dut.data

45 4E 3 3F 3F 3 48 e

Visualizer=

[-start <time>] [-end <time>] [-interval <time=>]

[<signalpathnar

STATEZ

@
@
[

10|

K

af]

GROUPT GROUPT
top.clk
GROUP1 GROUP1
rfa 0 |
GROUPZ
9 .dutA2. ADDR[31:
GROUP3

227277717

GROUPZ
A A O TR R AT

Briet Wave Window Description

What does the window we will be discussing do?

#f) WaveO - Current
W 0 - en

lave! T
File Edit view Options Tools Window

Zgavt QRAMEAMB W« AL £ a0 s ale |2 Diff ©|ins ~| Freq NAHz |-| ¥ 289
. . Signal Name | Values-C1 5000 6000 6500
* What is a Wave window used for? e e
count Events... ——— \—, —
t.WriteAd 11 4100 4 2 AL XXXXXXXX |3 ; XXXXXXXX

Grid Events...
Cut MegRo o .
ctrl+c =

L.Resg

* Viewing digital/analog signal activity |
over time.

XXXXXXXX

Ctrl+v

e N \ — - ~ —
* What types of user operations? . R —
e Cutting/Pasting ool
* Adding/Deleting signals/markers e B YU
* Expanding/Collapsing ;rgﬁ}m
e Zooming in/out/full s
e Panning left/right/up/down
* Creating Grids, Expressions,
Comments, Spacers
* And much more.

Brief Wave Window Description (cont

What does the “wave” command do?

* wave -help

Visualizer> wave -help Visualizer> wave grid -help
Usage: wave -help This message. # Usage: wave grid [-clear] [-help] [-from <value>] [-to <value>] [-regx]
wave activate Activate the specified window or report the active window. # [-start <time>] [-end <time>] [-interval <time>] [<signalpathname>]

wave add Add signals to wave window. Examples:

wave biometricsearch Set or clear Biometric search values. wave grid .top.dut.reset
wave cget Returns current configuration value for wave window. wave grid -clear

wave clear

Unselect all wave grid -start 1000ns -end 2000ns top.dut.rdy

Collapse a particular waveform by index. wave grid -from @ -to FFff* -regx top.dut.addr
Add a comment row. wave grid -from xxxxxxxx -to * top.dut.data
Compare two signals highlighting differences.

Create a concatenation of all selected signals.

Query or modify configuration options of the window.

Delete the selected objects.

Return the index of the last object in the wave window.

Expand a particular waveform by index.

Create an expression in the wave window.

wave clearselection
wave collapse

wave comment

wave compare

wave concatenate
wave configure

wave deleteselected
wave end

wave expand

wave expression

#
#
#
Clears the wave window. # wave grid -start 1000ns -end 2000ns -int 100ns
#
#
#

wave find Find the index of the next occurrence of a signal by name.
wave get Get the name and/or value of signals in the wave window.
wave grid Create a grid 1n the wave window.

wave group Create a new group or subgroup.

wave grouprename
wave index
wave insertion

Rename a particular group.
Get the index of selection, insertpoint or end of the wave window.
Set the location of the insertpoint in the wave window.

wave list Get the list of currently open wave windows.
wave marker Create new or modify existing markers in the wave window.
wave name Return the name of the active wave wilndow.

wave positioncursor
wave remove

wave save

wave seetime

wave selectall

wave selection

wave spacer

wave tags

wave timeunit

wave update

Control the location of the primary and secondary cursors.
Remove (unload) a qwave.db file from Visualizer.

Save the wave window format to a file.

Pan the wave window to see a particular simulation time.
Select all objects in the wave window.

Set or clear selection of signals by index.

Create a spacer.

Access the gqwave.db Tag values (1.e. "FO", "F1", etc).

Get or set the current time unit of the wave window.
Enable or disable drawing in the wave window.

wave zoomfull Zoom full.
wave zoomin Zoom in.
wave zoomout Zoom out.

B Il i i I R I R I I i R S

wave zoomrange Zoom to a particular time range.

Wave Command Architecture

How do we create such a command assuming we already have a Tcl shell?

* Tcl Command Registration

* String Conversion

* Handle Subcommands

* Provide User Command Help

Tcl Command Registration

How do we connect our Tcl command to our C/C++ application?

&« C O & Secure | https://wiki.tcl.tk/16878 aQ x @ [0
Tcl _CreateObjCommand i tol tk P 4
Updated 2014-12-28 15:41:42 by dkf WIKICI.

Home TR - This C function is used to create a new command usable from the Tcl script level. The
Recent changes definition is

Help

WhoAml/Logout Tel_Command Tcl_CreateObjCommand(interp, cmdName, proc, clientData, deleteProc)

Create new page gy it returns a Tel_Command (which is a token for the command) and takes 5 arguments:
Random page

Previous page
MNext page

interp - the interpreter in which to create the new command

cmdName - the hame of the new command (possibly in a specific namespace)

proc - the name of a C function to handle the command execution when called by a script
clientData - some data associated with the command, when a state needs to be taken care of
(a file for example); this is typically used where a proc is used to create a whole family of

Add comments

EF”t commands, such as the instances of a kind of Tk widget.
History « deleteProc - a C function to call when the command is deleted from the interpreter (used for
Edit summary cleanup of the clientData) which may be NULL if no cleanup is needed.

* Tcl_CreateObjCommand(xInterp, "wave", gTc|Wave, O, 0);
* int gTclWave(ClientData xClientData, Tcl_Interp *xInterp, int xObjc, Tcl_Obj *const xObjv([])

String Conversion

How do we pass strings back and forth between Tcl and Qt/C++

* Tcl_GetString, tclObjCls, QString.toLocal8Bit(), QString.fromUtf8()

The arguments passed to our “gTclWave” C function are passed as a Tcl_Obj [8] array.
We used the following strategy to convert these back and forth:

Tcl to QString:

QString IGroupArg;

|IGroupArg.sprintf("%s", Tcl_GetString(xObjvliii]));
QString to Tcl:

tclObjCls IResult;
tclObjCls IBufObj(gPrintable(IWin->mGetName()));
IResult.mLappend(IBufObj);

We defined “tclObjCls” as a class that contains the Tcl_Obj* (as “dObj”) along with convenience methods for creating,
printing, reference counting, etc Tcl_Obj objects. For example the mLappend() is defined to be:
mLappend(tclObjCls &xObj) {Tcl_ListObjAppendElement(NULL, dObj, xObj.dObj);

The function “gPrintable” is defined to be one of the many ways to get string data out of a QString.
#define gPrintable(string) (string).toLocal8Bit().constData()

As noted in the Future Work section of the paper, instead of toLocal8Bit we should be using the “fromUtf8()” and
“toUtf8()” methods for string conversion to more safely handle all possible characters.

Handle Subcommands

How do we keep our subcommands consistent and extensible?

* From https://www.tcl.tk/man/tcl8.4/TclLib/GetIndex.htm:
Tcl_GetindexFromObj, Tcl_GetIndexFromObijStruct - lookup string in table of keywords

#include <tcl.h>
int Tcl_GetIndexFromObj(interp, objPtr, tablePtr, msg, flags, indexPtr)
int Tcl_GetIndexFromObjStruct(interp, objPtr, structTablePtr, offset, msg, flags, indexPtr)

Tcl_Interp *interp (in)
Interpreter to use for error reporting; if NULL, then no message is provided on errors.
Tcl_Obj *objPtr (in/out)
The string value of this object is used to search through tablePtr. The internal representation is modified to hold the index of the matching table
entry.
CONST char **tablePtr (in)
An array of null-terminated strings. The end of the array is marked by a NULL string pointer. Note that references to the tablePtr may be retained
in the internal representation of objPtr, so this should represent the address of a statically-allocated array.
CONST VOID *structTablePtr (in)
An array of arbitrary type, typically some struct type. The first member of the structure must be a null-terminated string. The size of the structure
is given by offset. Note that references to the structTablePtr may be retained in the internal representation of objPtr, so this should represent the
address of a statically-allocated array of structures.
int offset (in)
The offset to add to structTablePtr to get to the next entry. The end of the array is marked by a NULL string pointer.
CONST char *msg (in)
Null-terminated string describing what is being looked up, such as option. This string is included in error messages.
int flags (in)
OR-ed combination of bits providing additional information for operation. The only bit that is currently defined is TCL_EXACT.
int *indexPtr (out)
The index of the string in .tablePtr that matches the value of objPtr is returned here.

https://www.tcl.tk/man/tcl8.4/TclLib/GetIndex.htm

Handle Subcommands (cont)
What are the benefits to using Tcl_GetindexFromObjStruct?

static optionWaveTable optionWawveCmds[] = {

//optionName optionEnum optionDesc optionFlags
{"add", CMD ADD, "Add signals to wave window.", 0},
{"blank", CMD_BLANK, e DEP},
{"clear", CMD CLEAR, "Clears the wave window.", 0},
{"comment", CMD COMMENT, "Add a comment row.", 0},
{"cursor", CMD CURSOR, "Control the cursors.", TBD},
{"InvokeMenu", CMD INVOKEMENU, "", HID},

Command creation method helps to ensure help text is also created.

Command names defined close together helps ensure consistency.

Defining and using optionEnum makes finding other commands easy.

The optionFlags field provides a handy way to hide or deprecate commands.

Can add as many other fields as you want to this structure.

Handle Subcommands (cont)

How did we call and use Tcl _GetIndexFromObjStruct?

int gTeclWave (ClientData xClientData, Tcl Interp *xInterp, int
x0Objc, Tcl Obj *const x0bjv[]) {

if (Tel GetIndexFromObjStruct (xInterp, xObjv[1],
optionWaveCmds, sizeof (optionWaveTable), "command",
0, &index) != TCL OK) {
return TCL ERROR;
} //Else If “-help” passed in for a particular command
switch ((enum optionEnumsWindowCmd)index) |
case VIS WAVE CMD GRID:
sWaveGridHelpMsg (xInterp) ;
return TCL OK; break;
case ..

} //Else call “wave” window command handler passing args
l1ActiveWaveWinPtr->mWindowCmd (xInterp, xObjc, x0bjv):

* Non-existant subcommands automatically handled.
* Top-level Help automatically generated from optionWaveTable.

* Subcommand redirection and help handled by switching on “index”.

Provide Command Help
How do we design the help system to be consistent and extendable?

Visualizer> wave -help
Usage: wave -help
wave activate

This message.
Activate the specified window or report the active window.

. . wave add Add signals to wave window.
L] wave biometricsearch Set or clear Biometric search values.
wave cget Returns current configuration value for wave window.
. wave clear Clears the wave window.

wave clearselection
wave collapse

wave comment

wave compare

wave concatenate
wave configure
wave deleteselected
wave end

wave expand

wave expression

Unselect all

Collapse a particular waveform by index.

Add a comment row.

Compare two signals highlighting differences.

Create a concatenation of all selected signals.

Query or modify configuration options of the window.
Delete the selected objects.

Return the index of the last object in the wave window.
Expand a particular waveform by index.

Create an expression in the wave window.

int waveFormWinCls: :mWindowCmdGrid (Tcl Interp *xInterp,
int xObjc, Tcl Obj *const xObjvI[]) {
static const char *options[] = {

" _help" 7 " _Clear" 7 " _from" 7 " _tO" ’ " —regX" ’ wave find Find the index of the next occurrence of a signal by name.
" " " woo : " * wave get Get the name and/or value of signals in the wave window.
_Start 7 —end , —lnterval ’ (Char) NULL } ; wave grid Create a grid in the wave window.

wave group
wave grouprename
wave index

wave insertion

Create a new group or subgroup.

Rename a particular group.

Get the index of selection, insertpoint or end of the wave window.
Set the location of the insertpoint in the wave window.

enum wavegridopt

wave list Get the list of currently open wave windows.
wave marker Create new or modify existing markers in the wave window.
WAVEGRI D_HELP 4 WAVEGRI D_CLEARI WAVEGRID_FROMI wave name Return the name of the active wave window.

wave positioncursor
wave remove

wave save

wave seetime

wave selectall
wave selection
wave spacer

wave tags

wave timeunit

wave update

Control the location of the primary and secondary cursors.
Remove (unload) a gqwave.db file from Visualizer.

save the wave window format to a file,

Pan the wave window to see a particular simulation time.
Select all objects in the wave window.

set or clear selection of signals by index.

Create a spacer.

Access the gwave.db Tag values (i.e. "FO", "F1", etc).
Get or set the current time unit of the wave window.
Enable or disable drawing in the wave window.

WAVEGRID TO, WAVEGRID REGX, WAVEGRID START,
WAVEGRID END, WAVEGRID INTERVAL };

//Call Tcl GetIndexFromObj to get “wave grid” subcommand

wave zoomfull Zoom full.
Tcl GetIndexFromObj (xInterp, xObjv[iii], options, wave zoomout Zoom out.

SR W KR P T B P I I W T B W W I I B P W I W W W K B K W W W W W R BB

wave zoomrange Zoom to a particular time range.

"option", 0, &lOptIndex)
switch (lOptIndex) { Visualizer> wave grid -help
case WAVEGRID HELP: # Usage: wave grid [-clear] [-help] [-from <value>] [-to <value>] [-regx]
© o977 # [-start <time>] [-end <time>] [-interval <time>] [<signalpathname>]
sWaveGridHelpMsg (xInterp) ; # Examples:
ples:
return TCL OK; break; # wave grid .top.dut.reset
= # wave grid -clear
case WAVEGRID CLEAR: // GUI Clear Method # wave grid -start 1000ns -end 2000ns -int 100ns
mGetWaveFormViewPtr () —>mClearGrid() ; i wave grid -start 1000ns -end 2000ns top.dut.rdy
#

wave grid -from 0@ -to ffff* -regx top.dut.addr
return TCL OK; break; wave grid -from xxxxxxxx -to * top.dut.data
case

Summary

What lessons have been learned from this work?

* Creating Tcl commands to interact programmatically with a GUI is
useful for many reasons.

* Tcl provides excellent resources for implementing these commands.

* The key Tcl routines to remember and leverage are
Tcl_CreateObjCommand, Tcl _GetString, Tcl _GetindexFromObjStruct()

* Designing commands with consistency in mind and with built in help
IS important.

