

The State of TclQuadcode

Kevin B. KennyKevin B. Kenny
Donal K. FellowsDonal K. Fellows

Tcl Core TeamTcl Core Team

2424thth Annual Tcl/Tk Conference Annual Tcl/Tk Conference
16-20 October 201716-20 October 2017

What TclQuadcode is:

Native code compiler for Tcl
 Procedures only
 Not yet methods, λ-forms
 Probably never global scripts

Running ahead of time
 Too slow for JIT!

Using advanced technology
 Many recent papers
 Data flow analysis in Static Single

Assigment (SSA)

Multi-year collaboration
 Kevin Kenny, Donal Fellows, Jos

Decoster, others

45k lines of Tcl, 3k lines of C++
 And ≈10k lines of generated code

Still a work in progress
 But a piece of software is never

“done!”

Why TclQuadCode?

Bytecode interpreter is too slow
 Delicate: changes make it slower!
 Unmaintainable: maze of goto
 Close to achievable speed

Making it much faster needs native
code.

Discussed among Tcl’ers for years
 Donal Fellows
 Kevin Kenny
 Don Porter
 Miguel Sofer
 Jos Decoster
 Others…

Very hard problem
Limited time to devote

Getting started

2010: Ozgur Ugurlu (GSoC student)
implements bytecode assembler

 Shows that bytecode can be
manipulated without
compromising safety.

≈2011: Compiler backend
embeddings in Tcl appear

 llvm, tcc
 Generate code without leaving

Tcl

2012: Karl Lehenbauer issues the
FlightAware challenges

 2× and 10× performance bogeys
 Got everyone moving!

2013: TclQuadcode project launched

Early progress

2014: Kevin studies translation of
bytecode to quadcode

 Easier to analyze and manipulate
 Explicit variables rather than stack

Kevin studies data flow analysis
 No SSA yet
 Datalog implemented to aid in

difficult analysis
 Datalog paper at Tcl conference

pre-announces TclQuadcode

Donal works out translation of
quadcode to LLVM IR

 Machine-focused rather than Tcl-
focused

 Huge amount of ‘glue’ needed

Kevin and Donal integrate code at
2014 conference

 Successfully run the first program:
[fib]

The long slog
2015: Add bytecode operations and
builtin commands, one by one.
Implement SSA and eliminate
Datalog

 Datalog not quite fast enough
 SSA enabled analysis with

relatively simple algorithms

Donal announces project formally at
Tcl conference

2016: Largely spend consolidating
and refactoring

 Limited developer time

2017: Big gains:
 Node splitting/loop peeling
 Global/namespace variables
 [upvar]
 Near-complete support for

ordinary built-in commands
(≈200 non-bytecode commands)

Measured results
Name Description Speedup

fib 85 Test simple loops 24.6×

cos 1.2 Test simple floating point 10.9×

wordcounter3 $sentence Dicts, string operations 5.4×

H9fast $longWord Compute a hash code on a string 4.9×

mrtest::calc $tree Recursive tree traversal and arithmetic on nodes 10.8×

impure-caller Best-case numeric code 66.1×

linesearch::getAllLines2 $size Larger numeric-intensive code, collinearity testing 10.3×

flightawarebench::test $size Karl’s first benchmark: geographic calculations 15.5×

Typical: 3-6× for general code, 10× and beyond for numeric-intensive code
Little or no speedup for string and I/O operations (Tcl is pretty good at strings)

How it works

Standard bytecode
compiler

Basic convert

Type
Analysis Quadcode

specialise

IR code issue

Optimise (inline code)
and issue code

Code out has
same interface as
input procedures

Quadcode
impls

Procedure
Definition

(typed quadcode)

Procedure
Definition

(typed quadcode)

Procedure
Definition

(untyped quadcode)

Procedure
Definition

(untyped quadcode)

Function
Definitions

(typed quadcode)

Function
Definitions

(typed quadcode)

Procedure
Definition

(string)

Procedure
Definition

(string)

Procedure
Definition
(bytecode)

Procedure
Definition
(bytecode)

Function
Definitions

(LLVM IR)

Function
Definitions

(LLVM IR)

Function
Definitions

(native code)

Function
Definitions

(native code)

Standard
Library

(LLVM IR)

Standard
Library

(LLVM IR)

Why it works

Avoid overheads
 Memory management, type

checking, value conversion

Enabled by type analysis
 int64_t, double, bool
 Check with [string is]
 Propagate through operations

such as +

Control flow analysis
 Some code paths exclude others
 After [expr {$x + 1}] succeeds, we

know $x is numeric!

Cross-procedure analysis
 Including specialization by type
 One implementation always

string-based

Path splitting

Path splitting

proc x {a} {
 set y 0
 for {set i $a} {$i <= 10} {incr i} {
 incr y $i
 }
 return $y
}

Look at x when called from Tcl
 $a is a string
 $i is a string
 ($i <= 10) is complicated
 [incr y $i] has to extract the

integer from a Tcl_Obj
 Bottom of loop has to put the

integer back in a Tcl_Obj

Path Splitting, continued

y 0←
i $a←
complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

throw error

return $y

Path Splitting, continued

y 0←
i $a←
complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

throw error

return $y

Path Splitting, continued

y 0←
i $a←
complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

integer
complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

throw error

return $y

Nonlocal Variable Access
What’s done:

 [namespace upvar]
 [variable], [global]
 [upvar 1 $arg name] gets –

special handling
 [upvar 1 constantName name] –

gets special handling
 [upvar $n …]
 [upvar #0 …]
 $::path::to::variable

What’s not done:
 Non-constant local names
 [upvar #n], n>0
 [upvar 0]
 $namespace::variable

Why?
 Potential to create aliases for local

vars
 Aliases wreck assumptions!

Also: Access to nonlocal variables is
still slow!

May have to change code to take best advantage

Slower:
proc accum {list} {
 global n; global s; global ss

 foreach a $args {
 incr n
 set s [expr {$s + $a}]
 set ss [expr {$ss + $a}]
 }

}

Faster:
proc accum {list} {
 global n; global s; global ss
 set n_ $n; set s_ $s; set ss_ $ss
 foreach a $args {
 incr n_
 set s_ [expr {$s_ + $a}]
 set ss_ [expr {$ss_ + $a}]
 }
 set n $n_; set s $s_; set ss $ss_
}

There’s still a lot to do!

Long compilation time
 LLVM is slow
 TclQuadcode is slower

● Written in Tcl

Large generated code volumes
 Many copies of procedures after

type specialization
 Long procedures

● Stresses downstream compiler

Incomplete language support
 Many things we think we know

how to do
 Some things are too dynamic to

compile
 Interpreter will always be

available

Next steps

[uplevel]
 Limited initially to constant scripts

and constant args in a caller
 Limited initially to [uplevel 1]

Better alias treatment
 Lift most of the penalty on

nonlocal variables

NRE
 Coroutines, unbounded recursion

Non-hacky arrays
 Currently, arrays are implemented

as dicts.

Procedure inlining
 May be required for [uplevel]

Get user experience!

Would language changes help?

TIP 283: “Fix variable name
resolution quirks”

 Ambiguity in how
$namespace::variable resolved

 Current behaviour absolutely
insane, source of bugs

 Current behaviour also insanely
difficult to implement in
compiled code

Help from the programmer about
aliases and types

 tcl::pragma::type int $value
 tcl::pragma::noalias var1 var2 …
 Maybe others…

tcl::pragma::type

Works on values, not variables.
Asserts that at a given point in
execution, a value has a given
type.
Throws error on wrong type
Useful for documenting API’s and
parameter checking

Simplifies compiled code called from
Tcl.
Forward type analysis on args
possible
Type checking outside loops
Much less node splitting simpler –
and smaller code.

tcl::pragma::noalias

Asserts that a given set of variable
names refer to distinct variables

 Can make exceptions for known
aliases.

 Throws a runtime error if the
constraint is violated

 Useful check few procs can –
survive unexpected aliasing!

Cannot analyze in general without
help Turing-complete problem!–

Can compile much better code
 Uncontrolled aliases are all strings

(because types are unknown)
 Changing any potentially aliased

variable requires converting all
potential aliases back from
strings

 Aliasing therefore has pervasive
effects.

Thank you!

Where TclQuadcode is:

Source code repository:
https://core.tcl.tk/tclquadcode/

Mailing list:
https://sourceforge.net/p/tcl/mailman/tcl-quadcode/

