)
uad
cod
e

y

4

S\
>
"

¢ Too slow for JIT!
Using advanced technology

¢ Many recent papers

¢ Data flow analysis in Static Single
Assigment (SSA)

Multi-year collaboration

¢ Kevin Kenny, Donal Fellows, Jos
Decoster, others

45k lines of Tcl, 3k lines of C++
¢ And =10k lines of generated code
Still a work in progress

¢ But a piece of software is never
“donel”

Discussed among Tcl'ers for years
¢ Donal Fellows
¢ Kevin Kenny
¢ Don Porter
¢ Miguel Sofer
¢ Jos Decoster
¢ Others..

Very hard problem

Limited time to devote

d -

D
;
bf

CCO
A

émbeddings in Tcl appear
¢ |[lvm, tcc

¢ Generate code without leaving
Tcl

t) 2012: Karl Lehenbauer issues the
FlightAware challenges

¢ 2x and 10x performance bogeys

¢ Got everyone moving!

2013: TclQuadcode project launched

A #
:

c

Donal works out translation of
quadcode to LLVM IR

¢ Machine-focused rather than Tcl-
focused

¢ Huge amount of ‘glue’ needed

+ No SSA yet Kevin and Donal integrate code at
¢ Datalog implemented to aid in 2014 conference
difficult analysis ¢ Successfully run the first program:
¢ Datalog paper at Tcl conference [fib]
pre-announces TclQuadcode ,
() P
Te— “’\QJ?

d 2016: Largely spend consolidating
| and refactoring

¢ Limited developer time
2017: Big gains:

¢ Node splitting/loop peeling

enabled analysis with ¢ Global/namespace variables

relatively simple algorithms * [upvar]
Donal announces project formally at * Near-complete support for
Tcl conference ordinary built-in commands
(200 non-bytecode commands)
‘Q [

7N

results

Name Description

fib 85 Test simple loops

cos 1.2 Test simple floating point

wordcounter3 $sentence Dicts, string operations

H9fast $longWord Compute a hash code on a string

mrtest::calc $tree Recursive tree traversal and arithmetic on nodes
impure-caller Best-case numeric code

linesearch::getAllLines2 $size Larger numeric-intensive code, collinearity testing

flightawarebench::test $size Karl’s first benchmark: geographic calculations

Typical: 3-6x for general code, 10x and beyond for numeric-intensive code
Little or no speedup for string and I/O operations (Tcl is pretty good at strings)

Procedure e out has Function
Definition nterface as Definitions

yrocedures

Procedure Standard Function
Definition Library Definitions

Optimise (inline code)
and issue code

Quadcode
impls

IR code issue ii

Basic convert

Procedure Procedure Function
Definition Definition — 5 Definitions
Type —— |
Analysis Quadcode

specialise

d -

5
A

)

=

Control flow analysis
¢ Some code paths exclude others

* After [expr {$x + 1}] succeeds, we
know $x is numeric!

Cross-procedure analysis
ck with [string is] ¢ [ncluding specialization by type

¢ Propagate through operations ¢ One implementation always
such as + string-based

Path splitting

Of

Yy
e s/ni/?
7S

;

Look at x when called from Tcl
$a is a string

$i is a string

($i <= 10) is complicated

[incr y $i] has to extract the
integer from a Tcl_Obj

* & o o

¢ Bottom of loop has to put the
integer back in a Tcl_Obj

e S+
i < NewlIntObj($i)

goto

\|
return $y

i < NewlIntObj($i)

4 =complicated: (i > 10)?7 »

ror< s $i numeric?

i &« IntFromObj($i)
y € 3y * 3

| i+ 1

i < NewlIntObj($i)

goto

\|
return $y

»< goto

y

integer

, > compticated: (i > 10)? »

‘rrorkiﬁ—ﬁﬂ-meﬁc—?' i ,
: -l Y7 S
y « $y + $i
i i+ 1 i« $i+1
gOtO < >a goto

Of

return $y

:

\‘\\\

\

What’s not done:
¢ Non-constant local names
¢ [upvar #n], n>0
¢ [upvar O]
¢+ $namespace::variable
Why?

¢ DPotential to create aliases for local
vars

gets special handling
¢ [upvar $n ..]
¢ [upvar #0 ..]

¢ $::path::to::variable

+ Aliases wreck assumptions!

Also: Access to nonlocal variables is

still slow! Yo %

A

to take best advantage

Faster:

proc accum {list} {
global n; global s; global ss
set n_ $n; set s $s; set ss_ $ss
foreach a $args {
incr n_
set s [expr {$s + $%a}]
set ss [expr {%ss + $%a}]

[expr {$ss + %a}]
} }

set n $n_; set s $s ; set ss $ss_

)

d -

ies of procedures after
type specialization

¢ Long procedures

e Stresses downstream compiler

Incomplete language support

¢ Many things we think we know
how to do

¢ Some things are too dynamic to
compile

¢ |Interpreter will always be
available

L

“\‘

NRE

i e penalty on
nonlocal variables

+ Coroutines, unbounded recursion

Non-hacky arrays

¢ Currently, arrays are implemented
as dicts.

Procedure inlining

¢+ May be required for [uplevel]

Get user experience!

Of

é]

“\‘

A E X

Help from the programmer about
aliases and types

¢ tcl::pragma::type int $value

¢ tcl::pragma::noalias var1 var2

¢ Maybe others...

+ Current behaviour also insanely
difficult to implement in
compiled code

L

\

56

seful for documenting API's and
parameter checking

Simplifies compiled code called from
licl.

® Forward type analysis on args
possible

® Type checking outside loops

® Much less node splitting — simpler
and smaller code.

Can compile much better code

¢ Uncontrolled aliases are all strings
(because types are unknown)

¢ Changing any potentially aliased
variable requires converting all
onstraint is violated potential aliases back from

¢ Useful check — few procs can strings
survive unexpected aliasing! ¢ Aliasing therefore has pervasive
effects.

Cannot analyze in general without

help — Turing-complete problem!
\ SUAD

()

o

7N

Thank you!

tclquadcode
Timeline

Where TclQuadcode is: B

30 most recent check-ins
® 113af7cl111] Leaf: Experimental package-oriented compiler. (user: dkf, tags: dkf-optimization-experiment)
[848132931b] merge trunk (user: dkf, tags: dki-optimization-experiment)
Leaf: Fast-path code can share some bits. (user: dkf, tags: trunk)
1 A more efficient way to store numeric values in a Tcl_Var. (user: dkf, tags: trunl

Ensure that all discovered local variables get an LVT entry. (user: dkf, tags: frunk)

114alaB1b4] Correct oversight: direct variable access must adjust 'readsGlobal’, "writesGlobal' and the 'pure’ and
'killable' flags. (user: kbk, tags: trunk)

Initial implementation: direct variable access (user: kbk, tags: trunk)

Closed-Leaf: Initial implementation of direct variable access. {user: kbk, tags: namespace-variables)

Source code repository:
https://core.tcl.tk/tclquadcode/

Mailing list:
https://sourceforge.net/p/tcl/mailman/tcl-quadcode/

~g

