
Package Repository Client and Server 
 

Joe Mistachkin @ Tcl 2016 
https://eyrie.solutions/

https://eyrie.solutions/
https://eyrie.solutions/
https://eyrie.solutions/

What are they?

• The Package Repository Client is a set of Tcl
scripts that are capable of locating, downloading,
and installing packages for both Tcl and Eagle.
Packages can be installed in advance or on-
demand.

• The Package Repository Server is a set of TH1
and Tcl scripts running on a carefully configured
instance of Fossil with the package data stored in
a SQLite database.

Why?
• The existing solutions for distributing packages for Tcl

are:

– Insecure, requiring the server machine itself to be fully trusted.

– Overly complex, requiring knowledge of arcane tools, settings,
and associated terminology.

– Write things in various locations on the target machine.

– Non-portable and/or proprietary.

Why? (continued)

• The existing solutions for distributing
packages for Tcl also:

– Write files to user-specific locations on target
machines. Why?

– Make extensive use of registry settings on
Windows. Why?

Package Metadata

• Tcl relies upon “pkgIndex.tcl” files for metadata
necessary to provide a given package.

• What if we could securely query a remote server
instead?

• What if we could configure that server to securely
serve our private packages in addition to those
provided by the community?

Package Files

• Most packages for Tcl consist of one or more
files.

• What if we could securely download these files
on-demand?

• What if we always want the latest version of a
rapidly changing package?

• What if we could use this to reduce the cost of
deploying our Tcl-based applications?

What does the server do?

• It allows packages for Tcl (and Eagle) to be
viewed, added, and managed via any web
browser.

• There are two parts, both of which are run
on Fossil:
– The package metadata server.
– The package file server.

What does the client do?

• It enables packages for Tcl (and Eagle) to
be located, downloaded, and optionally
persisted (i.e. installed) locally.

• All downloaded files are signed with PGP.

• All downloaded Eagle files are also signed
with Harpy.

Demo

How does it work?

• The client sends a lookup request to the
“package repository server” that includes
the name and version of the package being
sought.

• The request also includes a list of API keys
that were configured for use with the
package repository client.

How does it work? (continued)

• The server attempts to find all matching
packages, based on the name, TIP #268
version requirement, and the supplied list
of API keys.

• If a match is found, the server responds to
the request with a script that has been
signed with either OpenPGP or Harpy.

How does it work? (continued)

• The client verifies the signature on the
script received from the server and then
evaluates it using the appropriate target
language (i.e. native Tcl or Eagle).

• The script is free to perform any actions
necessary to obtain the package; typically,
it downloads a list of files using the
included “package downloader client”.

How does it work? (continued)

• All package files downloaded using the
“package downloader client” must be
signed using OpenPGP.

• All signatures will be verified prior to the
package being made available to the
interpreter.

FAQ

• Is it possible to setup private package
repository servers and/or private package
file servers?
– Yes.

• Is it possible for package authors to
maintain a set of packages and grant the
general public access to a subset of them?
– Yes.

FAQ (continued)

• How is the package repository (metadata)
server managed?
– Using a web interface, usable from any

reasonably recent web browser.

• How is the package file server managed?
– Using Fossil and/or a web browser.

FAQ (continued)

• How is access to the package repository server
controlled?
– Each account is given two API keys.

– The “full” API key (which should be kept private) allows
package metadata associated with the account to be
read, listed, added, modified, or deleted.

– The “read” API key (which may be shared) allows the
package metadata associated with the account to be
read via the “lookup” or “list” operations.

FAQ (continued)

• How is access to the package file server
controlled?
– Since it is a Fossil instance, managing users is

accomplished via the Fossil command line
and/or web interface.

– Generally, the “user name” is actually one of
the API keys issued to the account.

FAQ (continued)

• Since Fossil does not currently support
per-directory access controls, only public
package files should be published to it.

• Private package files can be supported
using another (private) instance of Fossil.

Future directions…

• Based on customer feedback:

– Additional packages will be supported.

– New features may be added to the client and/
or server.

What about open source?

• The Package Repository Client is open
source, using the Tcl license terms.

• The Package Repository Server is closed
source (for the time being).

Questions & Answers

Contact Information

• Eyrie Solutions
 sales@eyrie.solutions

• Package Repository Client
 https://eyrie.solutions/cgi-bin/pkgs

• Me (Joe Mistachkin)
 joe@mistachkin.com

mailto:sales@eyrie.solutions
https://eyrie.solutions/cgi-bin/pkgs
mailto:joe@mistachkin.com

