10 years of Speed
lTables

Peter da Silva
FlightAware

What are Speed
Tables?

What are Speed Tables”

 An array of structures
* A Key-Value store
A “NoSQL” database

* A portable API

Example

CExtension particles 1.0 {
CTable quark {
key 1id
double mass indexed 1 notnull 1 default 0.0
double charge indexed 1 notnull 1 default 0.0
varstring color indexed 1 notnull 1 default red
varstring flavor indexed 1 notnull 1 default top

}
CTable lepton {
key 1id
double mass indexed 1 notnull 1 default 0.0
double charge indexed 1 not null 1 default 0.0
}
..

A Speed Table looks much like any database table or structure

Example

CExtension particles 1.0 {
CTable quark {
key 1id
double mass indexed 1 notnull 1 default 0.0
double charge indexed 1 notnull 1 default 0.0
varstring color indexed 1 notnull 1 default red
varstring flavor indexed 1 notnull 1 default top

}
..

}

package require Particles

quark create t

t index create color

t index create flavor

t set g00001 charge 0.3333 color red flavor strange

It creates a C extension for managing structured data

Example

package require Particles

quark create t

t index create color

t index create flavor

t set g00001 charge 0.3333 color red flavor strange

t get g00001
g00001 0.0 0.3333 red strange
t foreach id “g*” {

puts “quark $id has color [t get $id color]”

}
quark gq00001 has color red

Speed Tables can be used as a fast array of structured data.

Compact

struct ctable HashEntry ({
ctable HashEntry *nextPtr;
char *key;
unsigned 1int hash;

}i
struct quark: ctable BaseRow ({

char *color;

char *flavor;

}i

Overhead: one HashEntry per row, two integers per varstring

What's new In Speed
Tables?

Problems in 2006

* A couple of small problems

 Not much standard library use, lots of ad-hoc
structures

 Assumed 32-bit memory

* And some bigger ones

 Limited access methods, just a structured array
* No shared access

FIXINg these problems

Rewritten to use Boost library and made 64-bit
clean.

Secondary indexes and extended search

Remote speed tables
Shared memory speed tables.

Searching

* Original search operation simply walked the entire hash table
and matched rows

o Still pretty fast!
* Unless you want to search on something other than the key.

 Added indexed search (search+) based on skiplists
» Skip Lists are easy to implement - no rebalancing

* Skip Lists potentially support lockless shared memory
access

o William Pugh, 1989
* ftp://itp.cs.umd.edu/pub/skiplists/skiplists.pdf

ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf

Slightly bigger rows

struct ctable LinkedListNode ({
struct ctable BaseRow *next;
struct ctable BaseRow **prev;
struct ctable BaseRow **head;

}i

struct quark: ctable BaseRow ({

double charge;
char *color;
char *flavor;

}i

Added: one Linked List Node per index (if used)

Searc

o {{=

Searching

N query language very simple and lisp-like

fieldname value} {null fieldname} ...}

Initially, first field in the query was only field that

could

use an ingdex

Required user to understand search costs
* Tedious tweaking
* Error-prone, especially for automated queries

Query optimizer

* First implemented in Tcl

* table search -compare [optimize $table {= field
value} {< field value} ...

 Re-implemented in C and vastly improved
e Score based
* Modified search based on optimizer
* Shortcuts like avoiding sorting phase

 Much more convenient and reliable

~iltering

 Compare operation is limited to “AND”, no
expressions

A more complex query language has problems
* Potentially slow down searches
 New and fertile source of bugs
* [ot of work to implement!

C Filters

CExtension Filtertest 1.0 {

CTable airfield {
key id
varstring name
varstring type indexed 1 default GA
double latitude notnull 1 default 0.0
double longitude notnull 1 default 0.0
double altitude notnull 1 default 0.0

cfilter closer args {double lat double long double range} code {
double dlat = lat - row->latitude;
double dlong = long - row->longitude;
if(((dlat * dlat) + (dlong * dlong)) <= (range * range))
return TCL _ OKj;
return TCL CONTINUE;

C Filters

cfilter closer args {double lat double long double range} code {
double dlat = lat - row->latitude;
double dlong = long - row->longitude;
if(((dlat * dlat) + (dlong * dlong)) <= (range * range))
return TCL_OK;
return TCL CONTINUE;

C Filters

airports search \
-compare { {!= type military} } \
-filter {closer {*}Smypos 150.0} \
—array row -code {
lappend nearby airfields $row(name)

}

int track filter closer (Tcl Interp *interp, struct ctableTable *ctable,
void *vRow, Tcl Obj *filter, int sequence)

{

struct track *row = (struct track*)vRow;
static int lastSequence = 0;
static double lat = 0.0;
static double long = 0.0;
static double range = 0.0;
if (sequence != lastSequence) {
lastSequence = sequence;
Tcl Obj **filterList;
int filterCount;

1f(Tcl ListObjGetElements(interp, filter, &filterCount, &filterList)

return TCL ERROR;

1f(Tcl GetDoubleFromObj (interp, filterList[0], &lat) != TCL_ OK)
return TCL_ ERROR;

1f(Tcl GetDoubleFromObj (interp, filterList[1l], &long) != TCL OK)
return TCL_ERROR;

1f(Tcl GetDoubleFromObj (interp, filterList[2], &range) != TCL OK)

return TCL ERROR;
}

double dlat = lat - row->latitude;

double dlong = long - row->longitude;

if(((dlat * dlat) + (dlong * dlong)) <= (range * range))
return TCL_ OK;

return TCL_ CONTINUE;

= TCL_OK)

Fast data |/O

read_tabsep
write_tabsep
import_postgres_result

import_cassandra_future

Shared Memory Speed
lTables

* (Most of) Speed Table in shared memory
* Except hash table, management metadata

* Only one process can write

* All other processes are read-only
e Can perform searches via skiplists
* |Locklessly!

Writer process

Creates the speedtable
e speedtable create table master {file ... size ...}

Hands out tokens to reader processes
» speedtable attach $pid ==> $list

Need to have a way to get pids and pass token
ists back to reader

* This is handled outside the speedtable code

All modifications to speedtable by writer

Reader process

* Requests access to speedtable
* speedtable create table reader $list

* Performs searches only

e Some search operations not possible
 E.g.-delete

| ockless

Reading, adding rows, and updating rows require no
locking because of the way skip lists work.

Deleted rows must be retained until no reader IS
accessing them

The master allocates a single word (the cycle) in shared
memory, and also assigns a cycle to each reader

Every time the master deletes a row or rows from the
table, it increments the cycle, and stashes the deleted
row and the current value for later use

| ockless

 Each time the reader performs a search, it also
copies the current value of the cycle to its copy

* Periodically the master “collects” the deleted rows

* |t searches through the readers for the oldest
‘active” cycle

* |t knows that any rows older than the oldest cycle
are not being used by any reader and can be
really deleted.

e This work iIs most of the overhead for the master

Remote Speed Tables

Client-server protocol
 Speed Table Transfer Protocol (STTP)

Connect to remote Speed Table via a socket
* Works on same machine or over network

Queries and responses passed over socket as lists

Except callbacks (search -code, etc...) run locally
 Bulk data transferred as TSV

Speed Tables AP

e Simple syntax
» ::stapi::connect sttp://localhost: 1616/

* Works very well with Shared memory speedtable!
e ::stapi::connect shared://localhost: 1616/
e Simply makes a remote call to "attach”

* Redirects everything but "search” to remote
master

Speed Tables AP

Very generalizable

Implemented wrappers around Postgres and
Cassandra

:stapi::connect sal:///table_name

:stapi::connect cass:///keyspace.table

sql:///table_name

PostgreSQL

 Connect to table
set st [::stapi::connect sqgl:///stapi_test]

e Perform search

search -compare {{match isbn 1-56592-*}} -key k -array row {
parray row

}

e (Generates and executes SQL
SELECT * FROM stapi_test WHERE isbn ILIKE '1-56592-%":

sql:///stapi_test

Why use STAPI to access
PostgreSQL

 Speed Tables very fast, but volatile
* PostgreSQL not volatile, but kind of slow

e Same code can access data multiple ways!
* Internal Speed Tables loaded from SQL
 Shared Speed Tables in "‘cache’ process
 Remote Speed Tables on "cache” host
* Actual SQL database

Cassandra

Connect to table
set st [::stapi::connect cass:///stapi_test]

Perform search

search -compare {{= isbn 1-56592-00001}} -key k -array row {
parray row

}

Generates and executes CQL
SELECT * FROM stapi_test WHERE isbn = ‘1-56592-00001"

CQL is much more restricted than SQL, so queries are
more limited. Some are “hoisted” to fragments of Tcl.

Questions?

