
10 years of Speed Tables
Peter da Silva

Tcl 2016

October 24, 2016

What's new and what's cool
Speed Tables is an in-memory key-value store with a non-SQL

single-table database query language, along with a set of front ends (the

Speed Tables API) that emulate Speed Tables with a variety of back-ends

including client-server connections to remote tables, PostgreSQL, and

most recently Cassandra.

This talk will provide a brief overview of Speed Tables and discuss

the changes and improvements since 2007.

What are Speed Tables?
Speed Tables are a key-value store that serves the dual purpose of providing a more

compact and higher performance alternative to Tcl hashes for heterogenous data, and providing a
standard API to structured searchable tables. They are very fast because they are implemented in
custom Tcl extension in C that is generated on the fly and compiled by taking a Speed Table
definition and generating a custom Tcl extension that implements one or more Speed Tables in a
Tcl extension that can then be loaded and used like any other extension:

CExtension particles 1.0 {
 CTable quark {
 key id
 double charge indexed 1 notnull 1 default 0.0
 varstring color indexed 1 notnull 1 default red
 varstring flavor indexed 1 notnull 1 default top
 }
}

This creates a Tcl extension called "Particles" that can now be loaded and used:

package require Particles
quark create accelerator
accelerator index create color
accelerator index create flavor
accelerator store id q0001 charge 0.3333 color red flavor strange
...
accelerator store id q6666 charge -0.6777 color green flavor top
accelerator search \
 -compare {{= color red} {= flavor strange}} \
 -array row -code {
 puts "Found a red strange quark id = $row(id)"
 }

Searches on the key field, or indexed fields, are blindingly fast. The search command re-
orders the query to perform the fastest and most efficient search first, and uses the rest as filters
on the result. Indexed searches can be also be performed on shared-memory tables with no
locking required, making the shared memory tables super-efficient.

What's new in Speed Tables?
The original implementation of Speed Tables was pure C, with manual memory

management, and assumed a 32-bit memory model. It's been extended to support 64-bit
architectures, and has taken advantage of a lot of components in the C++ Boost library.

To speed up searches and to extend the simple key-value store to provide an analogue of
database views, inline C filters have been added. These are defined with C fragments embedded
in the high level table definition, which are wrapped and inserted inline into the generated C
code and can be used to perform complex low-level operations during searches.

A lockless shared memory implementation with a single master and multiple read-only
slaves has been put into production at FlightAware. Performance is excellent, within a few
percent of non-shared Speed Tables even for the master, because writes are never locked.

The core Speed Tables methods and search syntax have turned out to be a good general-
purpose interface to indexed key-value data stores. A common implementation of the API in Tcl
with multiple back-ends has allowed systems to migrate pretty much transparently between native
C Speed Tables, a client-server API using network sockets, and PostgreSQL. Despite exposing
some differences between back-ends, it's possible to run the same code with local or remote
tables, using C tables or PostgreSQL.

The latest addition to the Speed Tables API is a Cassandra front end that converts each
high level search component in the Speed Tables request into either CQL or Tcl code, based on
the capabilities of the underlying Cassandra schema.

Query Optimizer
The original search operation simply walked the index and kicked off a callback on each

matched row. Adding indexes allowed a much faster search, but it was still necessary to make
sure that an indexed field was the first item in the row. I first implemented a "query optimizer" in
Tcl that looked for indexed fields and would have to be manually included in the call:

table search -compare [optimize {= field value} {< field value} ...]

This was cumbersome, and so I re-implemented it internally in the search function, and
modified it to assign scores to different types of comparison operator. The scoring was tweaked a
little based on the searches I was running into when this was first implemented, but it hasn't
really been revisited in several years. The base score table, indexed by the internal code for the
search type, looks like this:

 {SKIP_START_NONE, SKIP_END_NONE, SKIP_NEXT_NONE, -2 }, // FALSE
 {SKIP_START_NONE, SKIP_END_NONE, SKIP_NEXT_NONE, -2 }, // TRUE
 {SKIP_START_NONE, SKIP_END_NONE, SKIP_NEXT_NONE, -2 }, // NULL
 {SKIP_START_NONE, SKIP_END_NONE, SKIP_NEXT_NONE, -2 }, // NOTNULL
 {SKIP_START_RESET, SKIP_END_GE_ROW1, SKIP_NEXT_ROW, 2 }, // LT
 {SKIP_START_RESET, SKIP_END_GT_ROW1, SKIP_NEXT_ROW, 2 }, // LE
 {SKIP_START_EQ_ROW1, SKIP_END_GT_ROW1, SKIP_NEXT_ROW, 6 }, // EQ
 {SKIP_START_NONE, SKIP_END_NONE, SKIP_NEXT_NONE, -2 }, // NE
 {SKIP_START_GE_ROW1, SKIP_END_NONE, SKIP_NEXT_ROW, 2 }, // GE
 {SKIP_START_GT_ROW1, SKIP_END_NONE, SKIP_NEXT_ROW, 1 }, // GT
 {SKIP_START_NONE, SKIP_END_NONE, SKIP_NEXT_NONE, -2 }, // MATCH
 {SKIP_START_NONE, SKIP_END_NONE, SKIP_NEXT_NONE, -2 }, // NOTMATCH
 {SKIP_START_GE_ROW1, SKIP_END_GE_ROW2, SKIP_NEXT_MATCH, 3 }, // MATCH_CASE
 {SKIP_START_NONE, SKIP_END_NONE, SKIP_NEXT_NONE, -2 }, // NOTMATCH_CASE
 {SKIP_START_GE_ROW1, SKIP_END_GE_ROW2, SKIP_NEXT_ROW, 4 }, // RANGE
 {SKIP_START_RESET, SKIP_END_NONE, SKIP_NEXT_IN_LIST, 6 } // IN

There are additional modifiers that don't show up in this table, for example there's a bonus
for being the field the search operation is sorted on, because the index is ordered and thus the
sorting step can be avoided if a the right index is used. If the key field is being matched for
equality, then it gets an infinite bonus because the hash operation on the key is faster than
walking the index for large tables. And the case-sensitive match operation only gets a bonus if
it's an anchored match that allows the first part of the match to be pulled from the index.

There are some situations where the optimizer is not going to do a good job, where the
programmer could beat it based on information about the actual content of the table that the
optimizer doesn't have available. For example "non NULL" should have a higher score if you
know that particular index is sparse, and there are obviously going to be cases where the hash is
beaten by an index that happens to be a tighter constraint for that particular search, but right now
there's no way to tell search to override the optimizer. You can tell what field you prefer with the
"-index" option, but if it thinks a different field is better it will use it.

CFilters - Inline C in Speed Tables
The "compare" operation in search is basically like a series of "WHERE test AND test

AND test..." operations, but sometimes you want to perform more complex comparisons. Rather
than create a complex query language, that would be interpreted and slow down Speed Tables
blindingly fast searching, it was decided to add the ability to add the ability to embed filters in
the table definition itself. Since the table was implemented in C, the filters are themselves tiny
fragments of C code. Filters are evaluated using a "-filter" option on the search command that is
evaluated after any other comparisons, and can be applied to any search whether indexed or not.

Here is a very simple filter in a "luggage" table:

CExtension Filtertest 1.0 {
 CTable luggage {
 key id
 varstring owner indexed 1
 double x notnull 1 default 0.0
 double y notnull 1 default 0.0  
 double z notnull 1 default 0.0

 cfilter oversize args {double lim} code {
 if(row->x > lim || row->y > lim || row->z > lim)
 return TCL_OK;
 return TCL_CONTINUE;
 }
 }
}

This filter could be used like so, to calculate a surcharge for each oversized parcel on a
flight that has an assigned owner:

calculate surcharges for oversize luggage
luggage search \
 -compare { {notnull owner} } \
 -filter { {oversize 0.6} } \
 -array row -code {
 incr oversize($row(owner)) 1
 }  
foreach passenger [array names oversize] {
 set surcharge($passenger) [expr {$charge * $oversize($passenger)}]
}

The generated code for this function parses the arguments only once for each search - a
unique sequence number is generated for each search, so the filter arguments are only parsed
once no matter how may rows are matched:

int luggage_filter_oversize (
 Tcl_Interp *interp,
 struct CTable *ctable,
 ctable_BaseRow *vRow,
 Tcl_Obj *filter,
 int sequence)  
{
 struct luggage *row = (struct luggage*)vRow;
 static int lastSequence = 0;
 static double lim = 0.0;

 if (sequence != lastSequence) {
 lastSequence = sequence;
 if(Tcl_GetDoubleFromObj (interp, filter, &lim) != TCL_OK)
 return TCL_ERROR;
 }

 if(row->x > lim || row->y > lim || row->z > lim)
 return TCL_OK;
 return TCL_CONTINUE;
}

Since the each row is stored as a single C++ structure, the resulting code is as fast as native
C. Since the owner field is indexed, the search operation simply walks that index, rows with no
owners are not even examined.

struct luggage : public ctable_BaseRow {
 ctable_LinkedListNode _ll_nodes[LUGGAGE_NLINKED_LISTS];
 char *id;
 int _idLength;
 int _idAllocatedLength;
 char *owner;
 int _ownerLength;
 int _ownerAllocatedLength;
 double x;
 double y;
 double z;
 unsigned int _dirty:1;
};

For more complex filters that are passed multiple arguments, a more complex function is
generated, and with the "memoized" parameter passing the operation is as fast as possible. All
the list handling and error checking is generated automatically, making the filter itself simple and
easy to read. For example:

cfilter distance2 args {double target_lat double target_long double target_range} code {
 double dlat = target_lat - row->latitude;
 double dlong = target_long - row->longitude;
 double dsquared = (dlat * dlat) + (dlong * dlong);
 if(dsquared <= (target_range * target_range)) return TCL_OK;
 return TCL_CONTINUE;
}

Generates:

int track_filter_distance2 (Tcl_Interp *interp, struct CTable *ctable, ctable_BaseRow *vRow,
Tcl_Obj *filter, int sequence)
{
 struct track *row = (struct track*)vRow;
 static int lastSequence = 0;
 static double target_lat = 0.0;
 static double target_long = 0.0;
 static double target_range = 0.0;

 if (sequence != lastSequence) {
 lastSequence = sequence;
 Tcl_Obj **filterList;
 int filterCount;

 if (Tcl_ListObjGetElements(interp, filter, &filterCount, &filterList) != TCL_OK)
 return TCL_ERROR;

 if (filterCount != 3) {
 Tcl_WrongNumArgs (interp, 0, NULL, "filter requires 3 arguments: target_lat,
target_long, target_range");
 return TCL_ERROR;
 }

 if(Tcl_GetDoubleFromObj (interp, filterList[0], &target_lat) != TCL_OK)
 return TCL_ERROR;
 if(Tcl_GetDoubleFromObj (interp, filterList[1], &target_long) != TCL_OK)
 return TCL_ERROR;
 if(Tcl_GetDoubleFromObj (interp, filterList[2], &target_range) != TCL_OK)
 return TCL_ERROR;
 }

 double dlat = target_lat - row->latitude;
 double dlong = target_long - row->longitude;
 double dsquared = (dlat * dlat) + (dlong * dlong);
 if(dsquared <= (target_range * target_range)) return TCL_OK;
 return TCL_CONTINUE;

}

Fast data imports and exports
To quickly populate Speed Tables, a number of specialized methods have been created.

Initially, Speed Tables could be populated via flat text files with tab-separated values (TSV files).
This was extended to importing PostgreSQL results via the pgtcl library, and later Cassandra
results from casstcl. For example:

set r [pg_exec $conn "select id, name, type, weight from animals;"]  
if {"[pg_result $r status]" == "PGRES_COMMAND_OK"} {
 $table import_postgres_result $r  
}  
pg_result $r -clear  

Shared Memory Speed Tables
A Speedtable and its indexes can be placed in a shared memory segment, and accessed

(read only) by multiple processes through the search command on the indexed fields. This allows
a single master program to update an in-memory datastore that's used by multiple child
processes.

The use of skiplists means that no locking is required in this scenario. Since Skiplists are
allocated probabilistically and never rebalanced, it's possible to add and remove elements from
the list such that the list is always valid, even if a member is removed while another process is
walking it, so long as no list member or any of its memory is deallocated until its known to be
unreferenced.

To maintain this constraint, a clock is used. The master updates the clock each time it
allocates or deallocated memory. Each reader asks the master for a word in shared memory that it
can update, and when it starts a search operation it copies the current clock into its shared
memory. When the master releases memory, it copies the current clock to it and only actually
deallocates it when its clock is older (using modular arithmetic) than the clock of any reader.

The table is initially created in the master process, via

speedtable create table master {file filename size bytes ...}

Each reader needs to communicate with the master process to request a slot, which is
returned as a Tcl list containing the parameters passed to master, and a token letting the reader
know how to connect to the table and access its slot. This communication happens outside the
shared memory speed tables API, perhaps via a local socket connection. The client passes its pid
to the master, the master calls table attach pid and passes the list returned back to the client
that then creates a matching "reader table", via

speedtable create table reader $list

The reader can only perform a limited number of Speed Table commands, primarily search,
and certain options of search like -delete are disallowed.

Speed Tables API
The shared memory speed tables were developed together with a client-server API, which

provided a socket-based wrapper in Tcl that allowed a program to connect to a remote process
and access its Speed Tables directly. Instead of creating a table internally, a client would connect
with:

remote_ctable ctable://host:port/name table

This would connect to the specified host and port and pass the provided name though,
similar to the way most command-based TCP protocols, like HTTP, operate. Then the server
would accept forwarded Speed Table commands and respond with the results.

ctable://host:port/name

This allowed full read-write access to the remote Speed Table:

% remote_ctable ctable://localhost:161/m m
% m count
1200
% m store [list id 1001 owner joe x 1.0 y 1.0 z 0.2]
% m array_get 1001
id 1001 owner joe x 1.0 y 1.0 z 0.2

Performance is somewhat impacted by the extra reads and writes, and the server can only
support so many readers, but for one-to-few connections and short transactions it works very
well. And it turned out to be a really great way to handle the handshaking required by Shared
Memory Speed Tables.

% set params [m attach [pid]]
% ctable create r reader $params
% r share info
size 4194304 flags {core sync shared} name m creator 1 filename
sharefile.dat base 232
% r search -compare { {= owner joe} } -array row -code {
 puts $id
}
1001

Now the client can use the remote Speed Table for read-write access to the table, and the
shared version for super-fast searches. Still, keeping track of the two was inconvenient. So the
next step was to create a generalized Speed Tables API.

% set remote [::stapi::connect sttp://localhost:1616/]
% $remote count
1200

The routine ::stapi::connect creates a Speed Tables API object that accepts the same
methods as Speed Tables. With a syntax callously ripped from HTTP, this can clearly support a
variety of protocols. The first protocols implemented were sttp:// (Speed Table Transfer
Protocol, basically the client-server protocol) and shared:// (An STTP connection and a
Shared Memory Speed Table working together).

% set table [::stapi::connect shared://1616/master]

Methods that can be performed using Shared Memory Speed Tables are handled locally,
and commands that require action by the server are handled by STTP.

Since then, we have added sql:// (PostgreSQL) and cass:// (Cassandra) all accessed via
::stapi::connect.

ctable://localhost:161/m
sttp://localhost:1616/%5D
shared://1616/master%5D

PostgreSQL (sql://)

The SQL implementation will map the underlying table directly, by reading its schema out
of PostgreSQL, or a more complex STAPI URL can be constructed that assembles the exposed
Speed Table out of fragments of SQL. The URL should at least specify which column or group
of columns will be used for the key field, but recent versions of STAPI can even extract that from
the schema.

For example, suppose we have a table:

create table stapi_test (
isbn varchar primary key,
title varchar,
author varchar,
pages integer

);

One would connect with:

set st [::stapi::connect sql:///stapi_test]

This would produce a command ::stapi::sqltable1::ctable that behaves just like a
speedtable instance. If queried with:

search -compare {{match isbn 1-56592-*}} -key k -array row {
 parray row
}

STAPI would convert it to the query:

SELECT isbn AS __key,* FROM stapi_test WHERE isbn ILIKE '1-56592-%';

The key is extracted separately to maximize compatibility with Speed Tables, since it's
optional to name a key, though in practice the simulated table could maintain the original key
behavior in most cases. The Cassandra wrapper doesn't copy this quite so slavishly, and perhaps
this could be re-addressed later.

Cassandra CQL (cass://)

Cassandra has a more complex schema, with partitioning and clustering keys, but luckily it
also makes it easy to extract these from the schema... so a Cassandra URL can still be as simple
as cass://host:port/tablename, and the STAPI wrapper will extract key and index
information from the schema.

So, given a Cassandra table:

sql:///stapi_test
cass://host:port/tablename

CREATE TABLE test.class (
 room text,
 hour int,
 subject text,
 PRIMARY KEY (room, hour)
);

One can connect with:

set class [::stapi::connect cass:///test.class/]

And query with:

$class search -compare {{range hour 9 13} {in room {1301 1302}}} -array
row -code {
 parray row
}

Since STAPI knows the partition and clustering keys from the schema, it knows what
operations are possible on which fields, and can generate this code:

SELECT * FROM test.class
 WHERE room IN ('1301','1302')
 AND hour >= 9 AND hour < 13;

For some queries, one does have to add the Cassandra-only -allow_filtering 1 option
to the search. This incompatibility with the Speed Tables API is perhaps arguable, but consider
this request:

$class search -compare {{>= hour 12}} -array row -allow_filtering 1 -code
{
 parray row
}

Which would generate the following naive CQL:

SELECT * FROM test.class WHERE hour >= 12;

Since the partition key isn't present in the query, this code will fail with an error "Cannot
execute this query as it might involve data filtering and thus may have
unpredictable performance. If you want to execute this query despite the

performance unpredictability, use ALLOW FILTERING". Now, in principle, the cass://
method could detect this situation and automatically insert ALLOW FILTERING. But this isn't good
practice. Cassandra has to request all partitions and then filter the result for hour >= 12, which
is obviously very expensive. An explicit request by the user to allow filtering is required:

$class search -compare {{>= hour 12}} -array row -allow_filtering 1 -code
{
 parray row
}

Which tells Cassandra you really mean to perform this expensive request:

SELECT * FROM test.class WHERE hour >= 12 ALLOW FILTERING;

Conclusion
The Speed Tables API, particularly the search operator, is an extremely clean high level

interface to databases and database-like structures. The syntax is easy to parse and analyze, and
map into a variety of packages that can be viewed as indexed key-value datastores. It's easy to
extend, with filters, and process with tools like the query optimizer, and the underlying simple
native C tables and Skip List based indexes made it possible to extend to a unique shared-
memory solution.

