C Runtime In Tcl

Andreas Kupries Vancouver, BC CA
akupries@shaw.ca

ABSTRACT

This paper shows off and demonstrates a number of major features and supporting packages which were added to Critcl
since its inception.

1. INTRODUCTION

While Tcl [6] is not only an easy to use language, but often also fast enough, sometimes it is not enough.

Out of this desire for performance the ”C Runtime In Tcl” was born, Critcl [22] in short. Initially conceived and maintained
by Jean-Claude Wippler [12] the latter task came to me[II] after a time, via Steve Landers [15].

Note that Steve also wrote a very good introductory paper[10] to Critcl in 2002 and presented it at that year’s Tcl conference.
As about 80% of that paper is still true today this paper will not belabor the point and simply concentrate on the changes
Critcl underwent since then.

The structure of the paper is this. First the next section will provide an overview of the various usage modes of Critcl and
how they changed. This is followed by a section outlining the changes and extensions to the core API, and then after that
a section explaining the various supporting packages which make a number of things more convenient or easy to do. This is
followed by a section listing incompatibilites not fitting anywhere else, and thoughts about future development.

The code used in the demonstrations and examples is pulled from various packages using Critcl, specifically CRIMP [21],
Tc1YAML [32], TclLinenoise [27], KineTcl [26], and Marpa [30].

2. USAGE MODES

Critcl started out with a single mode of operation, the ”compile & run”. In this mode Critcl is used as a package which
collects the C fragments embedded in the Tcl code in memory and arranges with the Tcl’s auto-loader to compile and load
them when needed. A cache directory is used to keep the resulting binaries between sessions, to reduce the amount of time
spent on compilation further.

Due to the big disadvantage of the above, namely the need for a usable C compiler at runtime, very likely in a production
environment, a pre-compilation mode was quickly added, to compile the C code for distribution once and then simply use
the results at runtime, without the need for a compiler at that point. The entrypoint for these was the then-new critcl
application.

Actually there were two such build modes, one resulting in just a plain shared libary (-lib), and the other in a proper,
installable package (-pkg).

That was the state in 2002.

Since then the -lib-mode got removed, as nobody really used it.

At the same time (Oct 2011, v3.0 release) a new ”conversion” mode was added instead, -tea. As the name of the option
(hopefully) implies, this mode takes the Tcl code, embedded C code, etc. of the package and wraps them into the machinery
expected of a regular C extension, i.e. a TEA-compatible combination of configure and Makefile.

This was and is intended for automatic package build systems with strict requirements on the API between them and the
package to build.

In the case of ActiveState’s[5] build system it was in the end easier to extend it to be able to detect Critcl-based packages
and build them directly. In a similar vein my own Kettle [3] does know how to handle them, as does Sean Wood’s[17] PracTcl
[31]. BAWT [I] is able to use Critcl since version 0.3.0, recently released. The state of Quill [4], and kbskit [2] with respect
to Critcl is not known.

As such the -tea mode looks to be an experiment which failed. That said, the mode still exists, if somebody wishes to play
with it.

3. API CHANGES

Beyond the new and changed modes a lot of new things were added, both in the core API, and via supporting packages.
Among these are:

1. Better support for package metadata
Stubs table support

Optional and variadic arguments to cproc
Extended type support

Compiler diagnostic support

More efficient string usage via string pools
. Improved enumeration support

. Bitmap support

© o N e s oa o

. Classes and objects

The following subsections and the next section with its subsections will describe them all, in detail.

3.1 MetaData

When still working at ActiveState one of the things we needed to support the TEApot repository was meta data for packages,
i.e. package descriptions with keywords, categorization, etc.

While 1 was not that sucessful in promoting the use to package authord] as a maintainer of Critcl I was able to add
meta-data support into it.

::critcl::license author ?text...? | Specify author and license

ricritcl::summary text Specify short description of the package
r:icritcl::description text Specify a longer description
t:critcl::subject 7key...? Specify keywords and -phrases for an index
::critcl: :meta key ?word...? Specify arbitrary meta-data

r:critcl: :meta? key Return stored meta-data for a key
::critcl::buildrequirement script | Hide package dependencies from the meta data

Table 1: Meta-Data Declaration Commands

Listing 1: KineTcl meta data declarations

critcl::license \
{Andreas Kupries} \
{Under a BSD license.}

critcl::summary \
{OpenNI based Tcl binding to Kinect and similar sensor systems}

critcl::description {
This package provides access to Kinect and similar sensor system,
through binding to the OpenNI framework.

}

critcl::subject kinect primesense openni nite game

3.2 Stub Tables

One of the first things added to Critcl after I took over maintenance was support for stubs-tables.

While Tcl and Tk provide such for portable linking and use of shared libraries only a few extensions actually do. There is
no support for them in TEA and they need quite a lot of boilerplate in many places.

With Critcl supporting them directly through a few commands their use becomes much simpler. That said, a limitation
of Critcl’s support is that it is a walled garden. Packages based on Critcl can consume the stubs generated by other
Critcl-based packages, and export them to such. There is no cross-over with regular stubs however.

n part hindered by the TEA not supporting its generation

::critcl::api import name version Import stubs

r:critcl::api function resulttype name arguments | Declare function exported through stubs
::critcl::api header ?pattern...? Declare additional headers for the exported stubs
t:critcl::api extheader 7file...? Declare external headers for the exported stubs

Table 2: Stubs Import & Export Commands

Listing 2: Stubs Export

critcl::api header c¢/common.h
critcl::api header c¢/image_type.h
critcl::api header c¢/image.h
critcl::api header c¢/volume.h
critcl::api header c¢/buffer.h
critcl::api header c/rect.h
critcl::api header c¢/interpolate.h

critcl::api function {const crimp_imagetypex} crimp_imagetype_find {

{const char*} name
}

critcl::api function void crimp.imagetype_def {
{const crimp_-imagetypex} imagetype
}

critcl::api function Tcl-Obj* crimp-new_imagetype-obj {
{const crimp_imagetypex} imagetype
}

critcl::api function int crimp_get_imagetype_from_obj {
Tcl_Interpx interp
Tcl_Objx* imagetypeObj
crimp-imagetypex*x imagetype

Listing 3: Stubs Import

critcl::api import crimp::core 0.2

3.3 Optional & Variadic Arguments

The initial cproc command found in Critcl was quite simple. One of its limitations was that the user could only declare
procedures which take a static number of arguments. The moment a variable number of arguments had to be processed cproc
could be not be used anymore, and ccommand was required, putting the burden for the conversion of arguments and results

back on the developer.

Since version 3.1.16 this limitation of cproc is fully fixed, enabling developers to declare procedures with optional arguments,

and an unlimited number of arguments, with syntax similar to the Tcl core’s builtin proc.

Listing 4: Optional cproc arguments

critcl::cproc optional_middle {int a int {b 1} int {c 2} int d} void {
printf ("M%d|%d|%d|%d|\n”, a,b,c,d);
fflush (stdout);

Regarding listing [B] please note that the shown code is not exactly as generated. It was modified to better fit the pages, by
removing #line pragmas, comments, and other irrelevant lines.

Listing 5: Optional cproc arguments: Generated C code
#define ns__optional_middlel0 ”::optional_-middle”
static void c__optional_-middlelO (int a, int has_b, int b, int has_c, int c, int d)
printf ("M%d|%d|%d|%d|\n”, a,b,c,d);

fflush (stdout);
}

static int
tcl__optional_-middlel0 (ClientData cd, Tcl.-Interp *interp, int oc, Tcl-Obj xCONST ov|[])

{
int _a; int _has_.b = 0;
int _b; int _has_c = 0;
int _c;
int _d;
int idx_;
int argc_;

if ((oc < 3) || (5 < oc)) {
Tcl-WrongNumArgs(interp , 1, ov, 7a.?b?.7c¢?.d”);
return TCL_ERROR;

}

/x (int a) — — — —— %/

{ if (Tcl-GetIntFromObj(interp, ov[1l], &.a) != TCL.OK) return TCLERROR; }
idx-. = 2;

argc. = oc — 2;

/x (int b, optional, default 1) — — — —— x/

if (arge. > 1) {
{ if (Tcl-GetIntFromObj(interp, ov[idx-], &.-b) != TCLOK) return TCLERROR; }
idx _++;
arge. ——;
_has_b = 1;
} else {
b = 1;
}

/% (int ¢, optional, default 2) — — — —— x/
if (arge. > 1) {
{ if (Tcl-GetIntFromObj(interp, ov[idx-], &_c) != TCL.OK) return TCLERROR; }
idx_++;
arge. ——;
_has_c = 1;
} else {
_c = 2;

/x (int d) — — — —— %/
{ if (Tcl-GetIntFromObj(interp, ov[idx_-], &.d) != TCLOK) return TCLERROR; }

/x Call — — — —— %/
c__optional_middlel0(-a, _has_.b, _b, _has.c, _c, -d);

/x (void return) — — — —— %/
return TCL.OK;

Listing 6: cproc args handling

critcl::cproc variadic {int args} void {
int i;
for (i=0; i < args.c; i++4) printf (7[%2d].=%d\n”, i, args.v[i]);
fflush (stdout);

}

Regarding listing [7] please note that the shown code is not exactly as generated. It was modified to better fit the pages, by
removing #line pragmas, comments, and other irrelevant lines.

Listing 7: cproc args handling: Generated C code

#define ns__variadic4 7 ::variadic”
#ifndef CRITCL_variadic_int

#define CRITCL_variadic-int

typedef struct critcl_variadic_int {

int c¢; /x Element count %/

intx v; /x Allocated array of the elements x/
} critcl_variadic_int;

static int

_critcl_variadic_int_item (Tcl_-Interpx interp, Tcl-Obj* src, intx dst) {
{ if (Tcl-GetIntFromObj(interp, src, dst) != TCLOK) return TCLERROR; }
return TCL.OK;

}
#endif /+ CRITCL_variadic_int _________ * /

static void c__variadic4 (critcl_-variadic_int args)

{
int i;
for (i=0; i < args.c; i++) printf (”[%2d].=%d\n”, i, args.v[i]);
fflush (stdout);

}

static int
tcl__variadic4 (ClientData cd, Tcl.Interp xinterp, int oc, Tcl_-Obj *CONST ov[])
{

critcl_variadic_int _args;

/* (int args, ...) — — — —— */

{

int src, dst, leftovers = (oc—1);
_args.c = leftovers;
_args.v = (intx) ((!leftovers) ? 0 : ckalloc (leftovers x sizeof (int)));
for (src = 1, dst = 0; leftovers > 0; dst++, src++, leftovers ——) {
if (_critcl_variadic-int_item (interp, ov[src], &(-args.v[dst])) != TCLOK) {

ckfree ((charx) _args.v); /+ Cleanup partial work */
return TCLERROR;

}
I

Jx Call — — — —— x/

c__variadic4 (-args);

/* (Release: int args, ...) — — — —— */
if (.args.c) { ckfree ((charx) _args.v); }

/x (void return) — — — —— %/
return TCL.OK;

The handling of args is also a demonstration of the power of the support for custom types described in the next section,
generating the necessary conversion from the conversion of the declared base-type.

Listing 8: cproc ’args’ type generation

proc ::critcl::MakeVariadicTypeFor {type} {
set ltype variadic_$type
if {![has—argtype $ltype]} {
lappend one @@ src
lappend one &QA dst
lappend one @A xdst
lappend one Q@QA. dst—>

lappend map @lconv@ [Deline [string map $one [ArgumentConversion S$type]]]
lappend map Qtype@ [ArgumentCType $type]
lappend map Qltype@ S$ltype

argtype $ltype [string map $map {

int src, dst, leftovers = QC;

@A.c = leftovers;

@A.v = (@Qtype@x) ((!leftovers) ? 0 : ckalloc (leftovers x sizeof (QtypeQ)));

for (src = @I, dst = 0; leftovers > 0; dst++, srct++, leftovers——)

if (-critcl_.variadic_.@Qtype@_item (interp, ov[src]|, &(@A.v[dst])) != TCLOK) {

ckfree ((charx) @A.v); /+ Cleanup partial work x*/
return TCLERROR;

}

}] critcl_$ltype critcl_$ltype

argtypesupport $ltype [string map $map {
/* NOTE: Array ’v’ is allocated on the heap. The argument
// release code is used to free it after the worker
// function returned. Depending on type and what is done
// by the worker it may have to make copies of the data.

*/

typedef struct critcl-@Qltype@ {

int c¢; /* Element count x*/

Q@type@x* v; /x Allocated array of the elements x/
} critcl_@Qltype@;

static int

_critcl_variadic_.@Qtype@_item (Tcl.Interpx interp, Tcl_-Objx src, Qtype@x dst) {
@Qlconv@
return TCL.OK;

H

argtyperelease $ltype [string map $map {
if (@A.c) { ckfree ((charx) @Awv); }
4]

return $ltype

3.4 Custom Types

Another problem of the initial cproc was its limited support for C types. While the chosen types were arguably the most
important ones it became quickly a wall forcing developers back to the more burden-some ccommand.

Since version 3.1 this limitation is fixed, enabling developers to declare custom type(conversion)s, for both arguments and
results. As part of this change the support for the existing types was also rewritten to use the new commands, substantially
cleaning up the internals as well.

The previous section showed a complex example of the power of this feature already, where it was used to dynamically

generate type(conversion)s for arrays of any already supported base-type. I should note that I have not attempted to create
nested arrays, i.e. arrays of an array of some type.

::critcl::has-resulttype name Test if a result-type is known

::critcl: :resulttype name body ?ctype? Declare a custom result conversion

::critcl::resulttype name = origname Declare an alias for an existing conversion

r:critcl: :has-argtype name Test if an argument-type is known

r:critcl::argtype name body ?ctype? ?ctypefun? | Declare a custom argument-conversion

r:critcl::argtype name = origname Declare an alias for an existing conversion

t:critcl::argtypesupport name code Specify supporting code for conversion (structure definitions, and the like)
ricritcl::argtyperelease name script Release heap-allocated resources of an argument

Table 3: Type Definition Commands

Listing 9: Custom Argument Type

kinetcl_pizelformat is defined in kt_image.tcl
critcl:;argtype XnPixelFormat {
if (Tcl-GetIndexFromObj (interp, QQ,
kinetcl_pixelformat,
?pixelformat”, 0, &@A) != TCL.OK) {
return TCL_ERROR;

@A ++; /* Convert from Tcl’s O—indexed value to OpenNI’s 1—indexing. =/
} int int

Listing 10: Custom Result Type

critcl::resulttype XnPixelFormat {
if (rv = (XnPixelFormat) —1) {
Tcl_AppendResult (interp, ”Inheritance_error: _Not_an_image._generator”, NULL);
return TCLERROR;

/+ ATTENTION: The array is O—indexed, wheras the pixelformat ’'rv’ is 1l—indexed x*/
Tcl_SetObjResult (interp, Tcl-NewStringObj (kinetcl_pixelformat [rv—1],—1));
return TCLOK;

}
3.5 Diverting & Capturing Output

The standard behaviour for Critcl is to collect all the C code fragments in memory before assembling and writing them
to a file when the time comes to compile everything. This collection is done on a per-file basis, keeping the information of
different source files apart, except when explicitly asked for the opposite, see critcl: :source.

On the other hand, the same foundation can be used to keep things apart which normally would go together, by using virtual
files. They are organized as a stack and were introduced to support higher-level packages like the generators we will discuss
in section @ Their main purpose is to allow generators to intercept and capture the output of low-level critcl commands for
their own purpose, like additional templating and other transformations.

An important user is the critcl::class package (Section [L6]). Class- and instance methods can be written as either
ccommand and cproc equivalents, with the package internally simply delegating to the associated low-level commands and
capturing their output to ensure its own proper organization of the final C code.

Another advantage of this behaviour, beyond the trivial of not having to code up a duplicate implementation of cproc’s, is
that methods automatically inherit all features and extensions of the underlying commands. While this is not so important
for ccommand’s, which have not changed at all since inception, the same cannot be said for cproc’s. Custom argument- and
result-types, support for optional arguments, handling of args, all are supported by critcl::class without having to modify
the package at all.

::critcl::collect_begin | Begin new level of capturing
::critcl::collect_end End level and return captured code
ticritcl::collect script | Run script and capture code

Table 4: Capturing Code

Listing 11: Use of diversion in critcl::class

proc ::critcl::class::MethodExplicit {name mtype arguments args} {
mtype in {proc, command}
MethodCheck method instance $name

set bloc [critcl::at::get]

set enum [MethodEnum method $name]

set function ${enum}_Cmd

set cdimport ”[critcl::at::here!]__._._@instancetype@._instance._=_(@instancetype@)._clientdata;”

if {$mtype eq "proc”} {
Force availability of the interp in methods.
if {[lindex $arguments 0] ne " Tcl_Interpx”} {
set arguments [linsert $arguments 0 Tcl_.Interpx interp]
}

lassign $args rtype body

set body $bloc [string trimright $body]

set cargs [critcl::argnames $arguments]

if {[llength $cargs]} { set cargs ”"_$cargs” }
set syntax ”/x.Syntax:.<instance>_.$name$cargs.x/”
set body "\n....$syntax\n$cdimport\n..._$body”

set code [critcl::collect {
critcl::cproc $function $arguments $rtype $body —cname 1 —pass—cdata 1 —arg—offset 1
}]

3.6 Locating Issues

Nobody writes bug-free code. That makes it important to know where the issues are when the compiler reports them.
Critcl handles this by emitting appropriate #line pragmas which tell the C compiler where in the Tcl sources each piece of
C code can be found, since its inception.

However with the generator packages discussed in section] we get more layers on top, i.e. Tcl code generating Tcl code
containing embedded (generated) C code, and so on. With the existing system this caused problems in user code to be
reported relative to locations in the generator’s Tcl code, and not the user’s code.

To fix this a number of commands exposing the internal handling of locations was added. With them a generator package
can now easily place #line pragmas in front of user code before handing it to the next lower level. As each level places their
pragma in front of that it will be the pragma from the outermost level which is last seen by the C compiler and used for
location reporting, as we want it.

r:critcl::at::caller Save the current location at the caller
::critcl::at::caller offset As above, plus the line offset
r:critcl::at::caller offset level As above, with the base location taken from a different stack level
r:critcl::at::here Save current location in current procedure
ricritcl::at::get* Return stored location as #line pragma
ticritcl::at::get As above, and clears the store
i:icritcl::at::= file line Explicitly set the stored location
r:critcl::at::incr n... Modify the stored location
ricritcl::at::incrt str... As above, counting lines in the strings
ticritcl::at::caller! Combine caller and get
r:critcl::at::caller! offset Ditto

s:critcl::at::caller! offset level | Ditto

r:critcl::at: :here! Combine here and get

Table 5: Location Support Commands

Listing 12: Location command usage

proc ::critcl::iassoc::def {name arguments struct constructor destructor} {
critcl::at::caller
critcl::at::incrt $arguments ; set sloc [critcl:izat::getx]
critcl::at::incrt $struct ; set cloc [critcl:itat::getx]
critcl::at::incrt $constructor ; set dloc [critcl::at::get]
set struct $sloc$struct

set constructor $cloc$constructor
set destructor $dloc$destructor

lappend map @struct@ $struct
lappend map @constructor@ $constructor
lappend map @destructor@ $destructor

(...)

critcl::util::Put $header [string map $map S$template]
critcl::ccode "#include._<$hdr>"
return

4. SUPPORT PACKAGES

41 Ekekos

One important pattern for the creation of thread-oblivious extensions to Tcl is to place the “global” state of the extension
into a structure and then create and attach an instance of that structure to any interpreter loading that extension, via
Tcl_SetAssocData [7] and related APIs.

The not so nice part about this pattern is that very often more than 50% of the code needed to be written is just boilerplate,
first ensuring that the structure is initialized only once, and second that it is properly finalized when the interpreter it is
attached to gets destroyed. In the chosen example we have 7 lines of user code embedded in 25 lines of boilerplate, more than
3/4 of the total code (32 lines).

The support package critcl::iassoc [25] was written to take on the burden of creating all that boilerplate. All it needs are
the definition of the structure, and the C code fragments for initialization and finalization. Everything else will be generated
around that. The generated C-level API consists of a single function to retrieve and initialize (once) the structure.

All the other supporting packages described in the following sections, with the exception of the general utilities, make use
of this generator to handle the “global” state of their C code.

Listing 13: Ekeko: Declaration

critcl::iassoc::def marpatcl_-context {} {

Marpa_Config config;

Marpa_-Grammar grammar ; /+* Communication: Grammar —> Recognizer constructor s/

Marpa_Recognizer recognizer; /+x Communication: Recognizer —> Bocage constructor x/
A

data—>grammar = NULL;

data—>recognizer = NULL;

(void) marpa_c_init (&data—>config);

/* nothing to do x*/

Regarding listing [I4] please note that the shown code is not exactly as generated. It was modified to better fit the pages, by
removing #line pragmas, comments, and other irrelevant lines.

Listing 14: Ekeko: Generated C code

typedef struct marpatcl_context_data__ {
Marpa_Config config;
Marpa_Grammar grammar ; /+* Communication: Grammar —> Recognizer constructor */
Marpa_Recognizer recognizer; /x Communication: Recognizer —> Bocage constructor x/
} marpatcl_context_data__;

typedef struct marpatcl_context_data__x marpatcl_context_data;

static void
_marpa62_iassoc_marpatcl_context_Release (marpatcl_context_-data data, Tcl_-Interp* interp)

{

/* mnothing to do *x/
ckfree ((charx) data);

static marpatcl_context_data
_marpa62_iassoc_marpatcl_context_Init (Tcl_-Interp* interp)

{

marpatcl_context_data data = (marpatcl_context_data) ckalloc (sizeof (marpatcl_context_data__));

data—>grammar = NULL;
data—>recognizer = NULL;

(void) marpa_c_init (&data—>config);
return data;

error:
ckfree ((charx) data);
return NULL;

}

static marpatcl_context_data
marpatcl_context (Tcl_-Interp* interp)

#define KEY ”critcl ::iassoc/p=marpa/a=marpatcl_context”

Tcl_InterpDeleteProcx proc = (Tcl_.InterpDeleteProcx) _marpa62_iassoc_marpatcl_context_Release;
marpatcl_context_data data;

data = Tcl-GetAssocData (interp, KEY, &proc);
if (data) {

return data;
}

data = _marpa62_iassoc_marpatcl_context_Init (interp);

if (data) {
Tcl_SetAssocData (interp, KEY, proc, (ClientData) data);
}

return data;
#undef KEY

}

4.2 String Pools

Many packages will have a fixed and small set of string constants occuring in a few places. Most of these will be coded
to simply create a new string Tcl_Obj* from a const char* every time the constant is needed, as this is easy to do, despite
the inherent waste of memory. There is otherwise just too much boilerplate involved, especially when the extension is to be

thread-safe.

The support package critcl::literals [28] was written to tilt things the other way, to make the declaration and man-
agement of string pools which do not waste memory as easy as the normal solution, hiding all attendant complexity from the
user.

Most of the boilerplate is actually handled by critcl::iassoc (Section H.Il), with critcl::literals itself just a thin
wrapper which adds all the pool-specific code. The generated C-level API consists of a function converting from integer to
string, an enumeration, and a header file. The function is further registered as a cproc result type.

Listing 15: Literal pool: Declaration

critcl::literals::def marpatcl_step {

mt_s_rule 7rule”
mt_s_token ”token”
mt_s_nulling ”null”
mt_s_0 ?first”
mt_s_n ?last”
mt_s_id ”id”
mt_s_res 7 dst”
mt_s_value ”value”
mt_s_end_es ”end—es”

mt_s_start_es "start—es”

}

Regarding listing [I6] please note that the shown code is not exactly as generated. It was modified to better fit the pages, by
removing #line pragmas, comments, and other irrelevant lines.

Listing 16: Literal pool: Generated C code

typedef struct marpatcl_step_iassoc_data__ {
/% Array of the string literals , indexed by the symbolic names x/
Tcl_Obj* literal [marpatcl_step.name_ LAST];

} marpatcl_step_iassoc_data__;

static void
_marpad40_iassoc_marpatcl_step_iassoc_-Release (marpatcl_step-iassoc_data data, Tcl_-Interpx interp)

{

(..)
}

static marpatcl_step_iassoc_data
_marpad0_iassoc_marpatcl_step_iassoc_Init (Tcl_Interp* interp)

{

Tcl_.DecrRefCount (data—>literal [mt_s_rule]);

marpatcl_step_iassoc_data data = (marpatcl_step_iassoc_data) ckalloc (sizeof (marpatcl_step_iasso

data—>literal [mt_s_rule] = Tcl_-NewStringObj (”rule”, —1);
Tcl .IncrRefCount (data—>literal [mt_s_rule]);

(..)
}

Tcl_-Objx*
marpatcl_step (Tcl_Interpx interp,

marpatcl_step_-names literal)
{

if ((literal < 0) || (literal >= marpatcl_step_name_LAST)) {
Tcl_Panic (”Bad_.marpatcl_step.literal”);
}

return marpatcl_step_iassoc (interp)—>literal [literal];

4.3 Enumerations

A logical extension of the literal pools shown in the previous section are enumerations. Whereas a literal pool only allows
the conversion of a C identifier to a Tcl string, an enumeration can be converted the other way as well, from Tcl string to C
identifier.

This is what the support package critcl: :enum [24] provides, the easy declaration of enumerations with representations at
both C- and Tcl-level, which can be converted into each other.

Most of the needed boilerplate is actually handled by critcl::iassoc (Section [Ld]), with critcl: :enum itself just a thin
wrapper which adds all the enumeration-specific code. The generated C-level APT consists of an enumeration, two conversion
functions (integer to string and vice versa), and a header file. The two functions are further registered as cproc argument
and result types, respectively.

Note that package defines the underlying C-level enum type. This means that this package is not useful for writing
bindings to existing enumerations provided by external libraries. To do that use the enum- and bit-map packages instead.
They are explained in the following sections, [£.4] and

Listing 17: Enumeration: Declaration

critcl::enum::def demo {
E_global global
E_exact exact
E_filler filler

}

Regarding listing [I§ please note that the shown code is not exactly as generated. It was modified to better fit the pages, by
removing #line pragmas, comments, and other irrelevant lines.

Listing 18: Enumeration: Generated C code

typedef struct demo_pool_iassoc_data__ {
/% Array of the string literals , indexed by the symbolic names x/
Tcl_Objx literal [demo_pool-name LAST];

} demo_pool_iassoc_data__;

typedef struct demo_pool_iassoc_data__x demo_pool_iassoc_data;

static void
_enum6_iassoc_demo_pool_iassoc_Release (demo_pool_iassoc.data data, Tcl_Interpx interp)
{
Tcl_-DecrRefCount (data—>literal [E_global]);
}

static demo_pool_iassoc_data
_enum6_iassoc_demo_pool_iassoc_Init (Tcl_-Interpx interp)

{

demo_pool_iassoc_data data = (demo_pool_iassoc_data) ckalloc (sizeof (demo_pool_iassoc_-data__));

data—>literal [E_global] = Tcl_-NewStringObj (”global”, —1);
Tcl-IncrRefCount (data—>literal [E_global]);
¥

typedef enum demo_pool_names {
E_global, E_exact, E_filler , demo_pool.-name LAST
} demo_pool_names;

#define demo_ToObj(i,l) (demo_pool(i,1))

extern int
demo_GetFromObj (Tcl_-Interpx interp, Tcl-Objx obj, int flags, intx literal)
{
static const charx strings[4] = { 7global”, "exact”, ”filler”, NULL };
return Tcl_GetIndexFromObj (interp, obj, strings, “demo”, flags, literal);

}

4.4 Enum Maps

The supporting package critcl::emap [23] is a variant of critcl::enum. It was written to support the case where the C
enumeration (or equivalent) to map to Tcl is provided externally. The expected use-case is writing bindings for some other
library.

The generated C-level API consists of two conversion functions (integer to string and vice versa), and a header file. The
two functions are further registered as cproc argument and result types.

Listing 19: Enumeration mapping: Declaration

critcl::emap::def marpatcl_steptype {
step—rule MARPA STEP RULE
step—token MARPA _STEP_TOKEN
step—nulling MARPA _STEP_NULLING_SYMBOL
step—inactive MARPASTEPINACTIVE
step—initial MARPA _STEP_INITIAL
step—internall MARPA_STEPINTERNALI1
step—internal2 MARPA_STEP INTERNAL2
step—trace MARPA_STEP_TRACE

}

Regarding listing [20] please note that the shown code is not exactly as generated. It was modified to better fit the pages, by
removing #line pragmas, comments, and other irrelevant lines.

Listing 20: Enumeration mapping: Generated C code

typedef struct marpatcl_steptype_iassoc_data__ {

const charx c [841]; /* State name, C string x/
Tcl_Objx tcl [8]; /x State name, Tcl_-Objx, sharable x/
int value [8]; /+ State code x/

} marpatcl_steptype_iassoc_data__;
typedef struct marpatcl_steptype_iassoc_data__* marpatcl_steptype_iassoc_data;

static void
_marpad48_iassoc_marpatcl_steptype_iassoc_Release (marpatcl_steptype_iassoc_data data, Tcl_-Interpx int

{

(..)
}

static marpatcl_steptype_iassoc_data
_marpa48_iassoc_marpatcl_steptype_iassoc_Init (Tcl_Interpx interp)

{

Tcl_DecrRefCount (data—>tcl [5]);

marpatcl_steptype_iassoc_data data = (marpatcl_steptype_iassoc_data) ckalloc (sizeof (marpatcl_st
data—>c [6] = "step—rule”;
data—>value [5] = MARPASTEPRULE;
data—>tcl [6] = Tcl-NewStringObj (”step—rule”, —1);

Tcl_IncrRefCount (data—>tcl [5]);
}
int
marpatcl_steptype_encode (Tcl_Interp* interp, Tcl_-Objx state, intx result)
{
marpatcl_steptype_iassoc_data context = marpatcl_steptype_iassoc (interp);
int id, res = Tcl-GetIndexFromObj (interp, state, context—>c, ”"marpatcl_steptype”, 0, &id);
if (res != TCLOK) {
Tcl_SetErrorCode (interp, "MARPATCLSTEPTYPE” , ”STATE” , NULL);
return TCLERROR;
}
xresult = context—>value [id];
return TCL_OK;

Tcl_-Objx*
marpatcl_steptype_decode (Tcl_-Interp* interp, int state)

{
char buf [20];

int i;
marpatcl_steptype_iassoc_data context = marpatcl_steptype_iassoc (interp);

for (i = 0; 1 < 8; i++) {
if (context—>value[i] != state) continue;
return context—>tcl [i];

sprintf (buf, "%d”, state);

Tcl_AppendResult (interp, ”Invalid_marpatcl_steptype_state._code.”, buf, NULL);
Tcl_SetErrorCode (interp, "MARPATCLSTEPTYPE” ; ”STATE” , NULL);

return NULL;

4.5 Bitmapsé& Flags

The supporting package critcl::bitmap [19] is an outgrowtlﬂ of critcl::emap. Its use-case is the conversion of bit-sets
instead of individual integers, with the flags in the set described by an enumeration (or equivalent). At the Tcl-level such sets
are represented as lists of strings.

A unique feature of the package is the optional exclusion list. This feature was added to support the declaration of flags
for which only encoding makes sense, but not decoding. The expected use-case are flag values which represent a combination
of other flags in the mapped enumeration.

The generated C-level API consists of two conversion functions (integer (bitset) to list of strings and vice versa), and a
header file. The two functions are further registered as cproc argument and result types, respectively.

Listing 21: Bitset mapping: Declaration
critcl::include sys/inotify.h

critcl::bitmap::def tcl_-inotify_events {

accessed IN_ACCESS

all IN_ALL_EVENTS
attribute IN_ATTRIB
closed IN_CLOSE

closed—nowrite IN.CLOSENOWRITE
closed—write IN_CLOSE_WRITE

created IN_.CREATE
deleted IN.DELETE
deleted —self IN_DELETE_SELF
dir—only IN_ONLYDIR
dont—follow IN.DONT_FOLLOW
modified IN_.MODIFY

move IN.MOVE
moved—from IN.MOVED_FROM
moved—self IN.MOVE_SELF
moved—to IN.MOVED_TO
oneshot IN_.ONESHOT
open IN_.OPEN
overflow IN.Q.OVERFLOW
unmount IN_UNMOUNT

} { all closed move oneshot }

?Historically speaking it actually existed before critcl: :emap

Regarding listing [20] please note that the shown code is not exactly as generated. It was modified to better fit the pages, by
removing #line pragmas, comments, and other irrelevant lines.

Listing 22: Bitset mapping: Generated C code

typedef struct tcl_inotify_events_iassoc_data__ {

const charx c [20+1]; /+ Bit name, C string x/

Tcl_Objx* tel [20]; /+ Bit name, Tcl_-Objx, sharable x/
int mask [20]; /+ Bit mask x/

int recv [20]; /* Flag, true for receivable event x/

} tcl.inotify_events_iassoc_data__;
typedef struct tcl_inotify_events_iassoc_data__% tcl_inotify_events_iassoc_data;

static void

_inotify34_iassoc_tcl_inotify_events_iassoc_-Release (tcl_-inotify_events_iassoc_data data,
Tcl_Interp* interp)

{

Tcl_-DecrRefCount (data—>tcl [0]);
}

static tcl_inotify_events_iassoc_data

_inotify34_iassoc_tcl_inotify_events_iassoc_Init (Tcl.-Interpx interp)

{

tcl_inotify_events_iassoc_data data =
(tcl_inotify_events_iassoc_data) ckalloc (sizeof (tcl_inotify_events_iassoc_data__));

data—>c [0] = "accessed”;
data—>mask [0] = IN_ACCESS;
data—>recv [0] = 1;
data—>tcl [0] = Tcl-NewStringObj (”accessed”, —1);
Tcl.IncrRefCount (data—>tcl [0]);

}

int

tcl_inotify_events_encode (Tcl_.Interp* interp, Tcl_-Objx flags, intx result)

{
tcl_inotify_events_iassoc_data context = tcl_inotify_events_iassoc (interp);
int mask, lc, i, id;
Tcl_-Objx*x 1v;
if (Tcl.ListObjGetElements (interp, flags, &lc, &lv) != TCLOK) {
return TCLERROR;
}

mask = 0;
for (i =0; i < le; i+4+) |
if (Tcl-GetIndexFromObj (interp, lv[i], context—>c, ”"tcl_inotify_events”, 0,
&id) != TCL.OK)
Tcl_SetErrorCode (interp, "TCLINOTIFY_EVENTS” , "FLAG” , NULL);
return TCLERROR;

mask |= context—>mask [id];
}
sresult = mask;
return TCL_OK;

}

Tcl_Objx
tcl_inotify _events_decode (Tcl_.Interp* interp, int mask)

{
int i;
tcl_inotify_events_iassoc_-data context = tcl_-inotify_events_iassoc (interp);
Tcl_Objx res = Tcl_NewListObj (0, NULL);

for (i = 0; i < 20; i++) |
if (!context—>recv[i]) continue;
if (!(mask & context—>mask[i])) continue;
(void) Tcl.ListObjAppendElement (interp, res, context—>tcl [i]);

return res;

}
4.6 Classes& Objects

Writing classes in Tel is simpleﬁ. Writing classes in C is not that complicated either. Writing many tens of classes, well
now the boilerplate for setting up the global state, the class structures, dispatch, etc. becomes tedious.

That was the situation I faced when I took on the KineTcl project. The external library to bind to, OpenNI [9] (v1) was
very object-oriented, providing just shy of 20 classes.

From this the supporting package critcl::class [20] was born. And a few other things already mentioned in preceding
sections (Diversions, Custom types, Ekekos). While I still had to write the methods themselvesﬁ, everything else was generated.

An important early decision was to reuse the existing parts of critcl as much as possible. I.e. allow class- and instance
methods to be the equivalent of either ccommand or cproc, and delegate the main handling of the user’s code to these
commands. This has paid off since then, with all the extensions of cproc automatically available to classes without any
additional effort.

Normally I would now include an example of a class here, as was done for the preceding packages, followed by the C code
generated from it. Unfortunately the C code for classes is usually so large, it will not really fit, even with editing. As such
I recommend to go and take a look instead at either the examples in Critcl, or the Tc1YAML and Marpa packages. While
KineTcl is where it started, the additional higher-level generation of classes it does on top of the basic OO support tends to
muddy the waters, making it a bad introductory example.

4.7 General Utilities

The supporting package critcl::util [29] is, unlike all preceding packages, not a generator.
It provides a bare-bones set of utility commands to check the build environment and record the result of such checks.

s:icritcl::util::locate label paths 7ecmd? | Search a file in a list of directories, possibly filtered

sicritcl::util: :checkfun name ?label? Test ability to link function
s:icritcl::util: :def path define Tvalue? Add a #define to a config file
sicritcl::util: :undef path define Add an #undef to a config file

Table 6: Build environment introspection

Listing 23: CRIMP environment checks

if {[critcl::util::checkfun Irint]} {
critcl::msg —nonewline ” (native_.lrint ()).”

} else {
critcl::msg —nonewline ”(4+._compat/Ilrint.c).”
critcl::csources compat/lrint.c

}
crapply {{} {
foreach f { hypotf sinf cosf sqrtf expf logf atan2f } {
set fd [string range $f 0 end—1]
set d CHAVE_[string toupper $f]
if {[critcl::util::checkfun $f]} {
critcl::util::def crimp_config.h $d
critcl::msg —nonewline ” (have_$f).”
} else {
critcl::util::undef crimp_config.h $d
critcl::msg —nonewline ” ($f_—>_$fd).”

”

H

3The problem is choosing among the multitude of available OO packages[
40k, these days I pretty much use only Tc100
®Several important parts were even amenable to higher-level generation, providing another boost.

5.

INCOMPATIBILITIES

Since Steve Landers’s paper[I0] in 2002, which described version 2.0 we have moved to version 3.x, a major version change
which introduced two incompatibilities (or vice versa). These are

6.

1. The command critcl::platform was deprecated in version 2.1, and removed in version 3.0. It is superceded by

critcl::targetplatform.

. The command critcl::compiled was kept with in version 2.1 with semantics in contradiction to its documentation and

name. This contradiction was removed in version 3.0, with the visible semantics of the command changed to be in line

with its name.

MUSINGS

Regarding future development I am currently pondering

4.

1.

Extending critcl::emap with an option signaling more knowledge about the enumeration to map, like “Ordered”, “no
gaps between values”, “values starting at 0 (or fixed n)”, etc. All properties which can allow the package to generate

more efficient code.

Modifying critcl::bitmap so that its decoder is able to decode multi-flag combinations.

Create a variant of critcl::literals managing a dynamic pool of strings, for use with packages where user-provided

strings may occur multiple times. I.e. a cache of common user-input we could share.

Support packages encapsulating common C code, like convenience macros for memory allocation, assertions, and tracing.

APPENDIX
A. REFERENCES

BAWT, Paul Obermeier [13], http://www.bawt.tcl3d.org/

kbskit, Rene Zaumseil [I3], https://sourceforge.net/projects/kbskit/

Kettle, Andreas Kupries [I1], https://core.tcl.tk/akupries/kettle

Quill, Will Duquette [16], https://github.com/wduquette/tcl-quill

ActiveState, https://www.activestate.com

https://core.tcl.tk, Various

https://www.tcl.tk/man/tcl8.6/TclLib/AssocData.htm
https://www.tcl.tk/man/tcl8.6/TclLib/GetIndex.htm

OpenNI, https://en.wikipedia.org/wiki/OpenNT

“Critcl - Beyond Stubs and Compilers”, Steve Landers [I5],

PDF: http://www.digitalsmarties.com/Tc12002/critcl.pdf),

Slides: http://equi4.com/papers/ctpaperl.html

Andreas Kupries, https://core.tcl.tk/akupries/projects.html

Jean-Claude Wippler, https://github.com/jcw/

Paul Obermeier, http://www.posoft.de/

Rene Zaumseil, https://wiki.tcl.tk/18145

Steve Landers, https://www.digitalsmarties.com/

Will Duquette, http://www.wjduquette.com/

Sean Wood, http://www.etoyoc.com/yoda/

Ekeko, https://wiki.tcl.tk/ekeko

critcl::bitmap documentation, http://andreas-kupries.github.io/critcl/doc/files/critcl_bitmap.html
critcl::class documentation, http://andreas-kupries.github.io/critcl/doc/files/critcl_class.html
CRIMP, Andreas Kupries [11], http://core.tcl.tk/akupries/crimp

Critcl, Andreas Kupries [II], Steve Landers [I5], Jean-Claude Wippler [12],
http://andreas-kupries.github.io/critcl/

critcl::emap documentation, http://andreas-kupries.github.io/critcl/doc/files/critcl_emap.html
critcl::enum documentation, http://andreas-kupries.github.io/critcl/doc/files/critcl_enum.html
critcl::iassoc documentation, http://andreas-kupries.github.io/critcl/doc/files/critcl_iassoc.html
KineTcl, Andreas Kupries [11], https://core.tcl.tk/akupries/kinetcl

TclLinenoise, Andreas Kupries [11], https://github.com/andreas-kupries/tcl-linenoise
critcl::literals documentation, http://andreas-kupries.github.io/critcl/doc/files/critcl_literals.html
critcl::util documentation, http://andreas-kupries.github.io/critcl/doc/files/critcl_util.html
Marpa, Andreas Kupries [I1], https://core.tcl.tk/akupries/marpa

PracTcl, Sean Wood [I7], http://wiki.tcl.tk/42543

TclYAML, Andreas Kupries [11], https://core.tcl.tk/akupries/tclyaml

http://www.bawt.tcl3d.org/
https://sourceforge.net/projects/kbskit/
https://core.tcl.tk/akupries/kettle
https://github.com/wduquette/tcl-quill
https://www.activestate.com
https://core.tcl.tk
https://www.tcl.tk/man/tcl8.6/TclLib/AssocData.htm
https://www.tcl.tk/man/tcl8.6/TclLib/GetIndex.htm
https://en.wikipedia.org/wiki/OpenNI
http://www.digitalsmarties.com/Tcl2002/critcl.pdf
http://equi4.com/papers/ctpaper1.html
https://core.tcl.tk/akupries/projects.html
https://github.com/jcw/
http://www.posoft.de/
https://wiki.tcl.tk/18145
https://www.digitalsmarties.com/
http://www.wjduquette.com/
http://www.etoyoc.com/yoda/
https://wiki.tcl.tk/ekeko
http://andreas-kupries.github.io/critcl/doc/files/critcl_bitmap.html
http://andreas-kupries.github.io/critcl/doc/files/critcl_class.html
http://core.tcl.tk/akupries/crimp
http://andreas-kupries.github.io/critcl/
http://andreas-kupries.github.io/critcl/doc/files/critcl_emap.html
http://andreas-kupries.github.io/critcl/doc/files/critcl_enum.html
http://andreas-kupries.github.io/critcl/doc/files/critcl_iassoc.html
https://core.tcl.tk/akupries/kinetcl
https://github.com/andreas-kupries/tcl-linenoise
http://andreas-kupries.github.io/critcl/doc/files/critcl_literals.html
http://andreas-kupries.github.io/critcl/doc/files/critcl_util.html
https://core.tcl.tk/akupries/marpa
http://wiki.tcl.tk/42543
https://core.tcl.tk/akupries/tclyaml

	Introduction
	Usage modes
	API Changes
	Meta Data
	Stub Tables
	Optional & Variadic Arguments
	Custom Types
	Diverting & Capturing Output
	Locating Issues

	Support Packages
	Ekekos
	String Pools
	Enumerations
	Enum Maps
	Bitmaps & Flags
	Classes & Objects
	General Utilities

	Incompatibilities
	Musings
	REFERENCES -9pt

