Editomat:
Adventures in Commercializing a Tcl
Application

Clif Flynt
Noumena Corporation,
8888 Black Pine Ln,
Whitmore Lake, MI 48189,

http://www.noucorp.com
clif at noucorp dot com

October 23, 2016

Abstract

Sharing a Tcl/ Tk script with friends and colleagues is simple, easy and
effective. Writing an application to be released as shrinkwrap software is
surprisingly different. This paper discusses issues and solutions to releas-
ing a commercial Tel/ Tk application.

1 Introduction:

I wrote my first FORTRAN program in 1970. Since then, I've written about a
million lines of code for myself, my employers and clients. Until the last year,
I never wrote something to be sold to the general public. It was a shock to
discover how different releasing code to an in-house group or as freeware is
from a mass-market release.

Editomat is a tool designed to help writers improve their prose. During the
first two years of its life it grew from a trivial application using the text wid-
get’s search and tag features to highlight “weak” words to a comprehensive
text analysis package. Along with finding meaningless words, it highlights
repeated words, awkward sentences, poor constructions, potential grammar
errors, as well as graphing sentence length, performing Content/Function sen-
tence analysis, and generating statistical distributions of word and sentence
types. It does complex analyses to report emotional content, the mood of a
piece and provides comparisons with other works.

File Edit Help

)) | W] OO e

Editomat:

Adventures in Commercializing a Tcl Application
Clif Flynt

MNoumena Corporation,

8888 Black Pine Ln,

\Whitmore Lake, M| 48189,
http://www.noucorp.com

|

clif at noucorp dot com

Abstract:

Sharing a Tdl/Tk script with friends and colleagues is simple, easy and
effective. Writing an application to be released as shrinkwrap software
is surprisingly different. This paper discusses issues and solutions to

releasing a commerdcial Tcl'Tk application.

Introduction:

I used it on a daily basis and offered copies to friends who also used it and
found it improved their prose. After describing the application at a writer’s
conference it appeared to be useful enough for a commercial release.

And then the fun started.

2 Requirements For Users:

An engineering or personal use program can be casual. It only needs to work
"mostly” and awkward interfaces and workarounds are acceptable. The Mo-
tif or Win-95 look and feel is fine, and a hodgepodge of images and text on
the buttons is good enough. Tooltip popups are optional and need not be con-
sistent and even help is unnecessary if you're available when someone has a
problem.

Commercial software needs to do more than merely work. It must work all
the time. It needs an internally consistent, eye-pleasing GUI, a splash screen,
acceptance of license, intellectual property protection, managing sales and reg-
istration, mating a registered copy to hardware, a website with a shopping cart,
customer database and more.

2.1 GUI Considerations and Tk

My initial focus with Editomat was functionality. For personal use, it doesn’t
matter if something is pretty. it’s important that it works. If I had a good-
enough icon in my collection, it got used, otherwise, a button with a letter in it
was adequate. Tooltips are utterly unnecessary in an application you write for
yourself and use frequently. So far as help goes: “Use the Source, Luke”.

Obviously, this is not a releasable product. Not even as pre-alpha.

The first project was to rework the GUI. A commercial GUI needs to be
at least internally consistent. It’s best if it conforms to the behavior the users
expect, be it Windows 10, Google Docs or Warcraft.

Tk is frequently maligned for its archaic Motif and Win-95 appearance. The
default Tk appearance is usable, but not salable. That doesn’t mean that a good
GUI can’t be created with Tk. There are plenty of existence proofs of good Tk
GUIs.

The option command and the style support in the ttk widgets provide
tools to modify the look-and-feel of an application. Tk uses native widgets for
many megawidgets like file selection, which provides users with the expected
platform-specific behavior.

Editomat’s GUI theme is a pun on laundromat-several “washers” to eclean
up your prose. I opted for a cute GUI to capitalize on the joke. The buttons
in Editomat resemble front-loading washing machines with curved corners on
top control panel.

Each button uses the -image option to show a graphic. Tk’s option com-
mand is used to set the borderwidth , padx and pady to 0. This displays only
the image with no extra ornamentation, so the top appears to have curved cor-
ners, like Mac and Windows 10 buttons.

=
P

As further cuteness, when Editomat is busy, the washer doing the work
spins and a completion arc marches around the front window. The spinning
display might be handled with multiple images, but managing images for fifty
states of the completion bar (0 to 100 in 2 percent steps) and the rotation posi-
tions becomes unreasonable.

Instead, I show execution by overlaying the body of the button with a can-
vas. The washer, spinning clothes and completion arc are drawn on the canvas
and updated at intervals based on an ”after” event. The canvas covers the
button being processed courtesy of the “place” command.

To complete a minimal GUI, all buttons must have tooltip popup help and
the Help menu should be populated.

The Tcler’s Wiki, Tcllib and Tklib are prime sources for tools like tooltip
popups. I use a variant of Stewart Allen’s tooltip code from the wiki.

My help system is built around the venerable pure Tcl htmllib. For simple
help pages, pure Tcl is fast enough. The HTML supported by this widget is suf-
ficient for text, graphics and links. Being pure Tcl there’s no compile required

for the various ports of Editomat.
The only modification to the standard libhtml.tcl package is a custom link
processor to display a new help page.

idgddsisadstdstdtidaddtddtddtastdddddadtdstdatddddada AR LA AR EER
proc HMlink_callback {win href}
This proc is called by the html_library code to parse a

hypertext reference.

#

Arguments

win The text window used by the html_library

to display the text

href A hypertext reference to use for the next page.
#

Results

This example simply replaces the contents of the display

with hardcoded new text.

proc HMlink_callback {win href} ({
global newHTMLtxt

Clear the old contents from the window.
HMreset_win S$win
Display the new text.

help::_insertHelp Shref

3 Gentlemen, Start your engines:

An in-house application just starts. Nobody cares if they see the widgets being
placed or if there’s a blank screen. Commercial software needs to display a
EULA acceptance page the first time it’s run. On subsequent startups, it should
have a splash screen to hide the ugly GUI building, a user tip to occupy the user
for a few moments.

Tk’s toplevel command provides the basis for splash, tips and EULA. The
wm command unmaps the main window until it’s fully populated.

3.1 Making a splash

I'used the Tk toplevel to create a splash screen. To make it more interesting the
splash display is built with a canvas and images. The Tk image’s ”-gamma”

option changes an image’s appearance and lets me fade in the image as the
mainline code is initializing.

3.2 Providing a tip

Users will be upset if there’s no help available, but that doesn’t mean they’ll
read any documentation. The common technique for providing the user with a
clue is the startup “Usage Tip”. Editomat’s tips tell the user how to find weak
words, how to add new patterns to the list of patterns to highlight and such.
The toplevel, message and button commands provide the tools to create a
startup tip. An after event removes the tip window after a few seconds.

3.3 Let me see your License and Registration

An inhouse application doessn’t need a license or registration. A commercial
product does. The license defines the relationship between you and the buyer.
It specifies that they are only buying one copy for their own use, not one to
resell a billion times on E-Bay. It protects you from being sued if the program
crashes and destroys years of work.

In practice, a license is only worth the money you are willing to pay a
lawyer to enforce it, but it gives you a leg to stand on if someone does steal
your work or tries to hold you responsible for their problems.

I found a boilerplate license generator on the internet. I used
https://www.binpress.com/license/generator
and modified the licence it created to match my needs.

A license must be accepted, either with the popular by opening this pack-
age you accept the license” or an explicit "I accept the license” button.

Since Editomat is distributed over the Net, not in a shrink-wrapped pack-
age, it uses the latter style. When Editomat is started for the first time the user
must accept a EULA.

Editomat’s Help/About menu option displays the license along with other
information about Editomat. Since the help code already exists, I piggybacked
the EULA acceptance onto that by creating the window, then removing the
“Dismis” button and replacing it with “Accept” and "Not Accept” buttons.
Thie acceptLicense procedure uses vwait to create a dialog modal, pausing the
execution until the user has either accepted the EULA, or rejected it, in which
case Editomat exits.

proc acceptLicense {} {
set ::done 0

Display the "About" help screen.
:thelp::about

Reset title from default
wm title .about "Accept License"

Remove buttons
destroy {*}[winfo children .about.bb]

Add new buttons
set ff .about.bb
button $ff.acc —-text "Accept" -command "set ::done 1"
button $ff.rej —-text "Not Accept" -command "set ::done -1"
grid $ff.acc $ff.rej

after idle {
centerWindow .about

}

Wait for user to click something
vwait ::done

Update preferences data to reflect acceptance, or exit
if {$::done > 0} {

set ::State(accepted) 1

savePrefs

destroy .about
} else {

exit

In the end, I spent almost as many hours cleaning up the appearance and
adding help as I spent developing the algorithms.

4 Protecting Intellectual Property:

Allideas are simple once you understand them. The bulk of Editomat is straight-
forward text processing and algorithms that have been in the literature for
decades.

Editomat’s implementation and selection of tools is custom. It took me a
couple years to find the best techniques and fine-tune the performance and
behavior.

The philosophy of Tcl is to make code easy to share, but I don’t intend to
share the guts of Editomat, so Editomat uses a few tricks to protect its code.

First, Editomat is distributed as a wrapped executable, not as a script. This
is partly to make it harder to read, but mostly to confirm that Editomat will
run on an unsophisticated user’s computer. Relying on a user to install the
expected revision of Tcl/ Tk is unlikely to lead to market penetration.

The next trick is that the bulk of Editomat’s code is stored in an encrypted
file within the wrapped executable. The encrypted data is decrypted with a
”C” extension that’s loaded at runtime from a small Tcl stub.

The last trick to keeping the code safe is to remove the “send” command to
prevent tkcon from being attached to a copy of Editomat running on a Linux
platform.

5 Regression Testing:

A tool for personal use, or even one used within a department doesn’t need
rigorous testing. If it fails, you'll be told about a bug quickly and once it’s fixed
everyone will be happy again.

A commercial product needs to behave predictably and consistently. A new
feature should not break or even change old behaviors.

5.1 TkTest for regression testing

TkTest is based on the TkReplay framework developed by Charles Crowley
of University of New Mexico and described at the 4'th Tcl/Tk Workshop in
1995. TkTest was first presented at the Tcl/Tk Conference in 2004. At that
point, TkTest was useful to exercise and test a GUI for consistent behavior on a
test-by-test basis.

TkTest was later expanded to support automated regression testing on a
suite of tests. This was described at the 2015 Tcl conference.

A TkTest script to check the the return value of a Tcl command and the
contents of a couple windows resembles the following image.

File Edit Settings Help

| Status: Connected | Event Script: vovTest2.tkr

| Connected To: fileWatchOO.tcl | Control Script:
Event Script | Control Script |

File Edit

ririvEu] aj&jaanjil §|D]

0.0 — Beginning of script — Y
0.0 ExecTcl "CheckReturn {eval {exec g...letxt}} {}"
0.0 ExecTcl "CheckWinReturn .delta2 {....}}} #727777"
0.0 ExecTcl "CheckWinReturn .delta2 {....}}} #79277"
0.0 — End of script —

A
~J 1=

Loaded script "/cliff/TCL_STUFF/tktestfvovTest2. thkr"

These individual tests can be combined to create a larger test suite with the

Control Script window.

File Edit Help

Status: Connected | Event Script: dayhook-actenterdel .tkr
Connected To: Day Book | Control Script: dayhook-reqgr.scr

Event Script Control Script]

File Edit

> p[H]m]] 7]

FunScript daybook-editmru?. thr A
RunScript daybook-edtmnunl. tke
RunScript daybook-companyinsert. tkr
RunScript daybook-cmprnyl. thr
RunScript daybook-project. tkr
RunScript daybook-projectl. thr
FunScript daybook-peoplentry. thr
RunsScript daybook-peoplechkl. tkr
RunScript s/home/clif/TCL_STUFF /tkreplay/daybook-acttypentros|
RunScript /home/clif TCL_STUFF /tkreplay/daybook-acttypchkl.
RunScript /home/clif /TCL_STUFF/tkreplay/daybook-exptypentry

RunScript /home/clif /TCL_STUFF /tkreplay/daybook-exptypechk]
RunScript /home/clif /TCL_STUFF/thkreplay/daybock-projects. th| .

= |

Finished replaying the scrnipt

TkTest’s runRegressionTest . tcl script uses a file folder based schema
to hold multiple sets of tests and expected results. The regression script steps
through these folders, runs the tests and records the results.

In theory, this is simple and easy.

It turns out that Tk behaves slightly differently on different platforms. Even
different versions of Linux can create a GUI with different fonts. Different size
fonts affect what appears in the text widget and change the locations of high-
lights and tags.

My two approaches to this problem are

1. to add a facility to TkTest to ignore certain sets of data.
2. replace exact expected values with wildcard values.

3. to create customized tests for the different platforms.

Ignoring some data values is simple. Identifying the proper sets to ignore
and manually updating the scripts is time-consuming and tedious.

Automating this process is on my list of things to do in TkTest.

TkTest already has a facility to rerun a test and record the new values as
correct. This sped up recreating tests for the alternate platforms.

Once I have confirmed that a test is running correctly and the behavior is
correct, I run manually those tests on the specific hardware it was developed
for.

My current procedure is to run all the regression tests on my Linux develop-
ment system for each minor release to confirm that no behavior has changed. I
spot-test the Mac and Windows platforms to confirm the platform specific code
has not been compromised.

6 Sales and Distribution:

All the clever code in the world doesn’t matter if nobody can buy or install the
product.

The Editomat sales cycle starts with the user downloading a free evaluation
copy from the Editomat web site. This copy is good for 30 days and will process
documents up to 20,000 characters long. Once they’ve tried Editomat and are
pleased, they can revisit the site to purchase a license.

Verifying that a user has paid for editomat and is only installing a single
copy on a single machine is one of the trickiest parts of the Editomat system.
It requires a website form, Paypal, web service calls, and an email processing
robot.

The flow resembles this

Email Server

Build System TclHttpd Server

Daily evaluation copy is
available.

[Nightly Build. ed\tomat—EVAL|/

Copy

val copy to uger system
User downloads eval copy

Purchase page includes form for
basic info

* [User elects to purchase

User directefil back to website

Form is complete and validated. \PayFa\ gets user payment info|

User redirected to paypal. l——-"’f"
Redirect - Includ E@éﬂaﬂl%j‘m&“ jwebsarveg

Update Temp table in regDb
database

Process email. Extract name

/ and invoice ID

Paypal sends email rm:h user & serial num

Paypal processes payment.
Sends data to editomatic

Generates "addRegistration"
http::geturl request with serial
Num, info,
licenseRemaining=payment/20
+1 and licenseKey

__—__—__—___‘——'———___ addRegistrat\oaneb service call

| RO eK-and Email list

Receives email list from server -
email in pending table may not
be paypal email address.
Generate email to user(s)

Update payment database. Set
licenseRemaining

[Send email to user|

%\stration Key - dec2Base [clock sefonds] b62

User Selects Register button in
Editomat

User provides serial number

Web Services connection from
Cg&ﬂ;r:dsﬁ:;?lor‘:grf:g&s randly Editomat to Server to confirm
P = registration

Send Serial nunpber

[Reply to http connect is GO| [editomat-EVAL makes new copy|

New copy is registered with
[l] II] 2036 expiration date and MAC [l] II]

address of computer.

7 The flow of events for purchasing Editomat is:

1. The user downloads the evaluation copy of Editomat: editomat-EVAL.exe
. The user drags the file to their desktop.

. The user visits www.editomat.com/Purchase.

2
3
4. The user fills out a form to provide email address and other information.
5. The user is redirected to Paypal to complete the transaction.

6. Paypal sends confirmation email to editomat.com

7

. An email robot on editomat.com processes the email and generates a
webservice action to update the database with payment information

®

The httpd service replies with a registration code.
9. The email robot sends this registration code to the user.

10. The user clicks the “Register” button on editomat-EVAL.exe and types
the 6 digit registration code in the entry widget.

11. Editomat sendss a web-service request to www.editomat.com with the
registration code.

12. The www.editomat.com httpd daemon checks the database and sends a
Go/No-Go reply

13. If the response is Go, Editomat copies editomat-EVAL.exe to editomat.exe
and modifies an internal file to include the MAC address of the NIC.

Everything except the user actions is automated.

The editomat database records registration information for each user. This
information includes the user’s name, preferred email address, some demo-
graphic information, a registration code, and the number of registrations al-
lowed for that code. The registration code is used to map payments to regis-
trations. A user my purchase multiple registrations for a single code.

The final step for a user is registering their copy of editomat. When this
step is complete, the editomat executable includes a copy of the MAC address
of the primary NIC in an encrypted form. Editomat will only run on a machine
with that MAC address.

Editomat uses tclhttpd and Tcl On Track as the base website engine, SQLIte
for the database (via TDBC) and Paypal as the payment back end. Using Paypal
required (finally) adding a payment back-end to Tcl on Track.

The Email robot that processes the Paypal payment reports is an extension
of the robot described in Tcl 2010 “Handling Email with Tcl Assist”. This robot
uses expect to run the venerable mail program. It parses the headers and then
invokes a rule engine to find patterns and determine the proper action.

When the phrase "Notification of payment received” is seen in the subject,
the processPayment procedure is invoked. This procedure uses the http::geturl
command to send a request to the editomat web server. The reply is then
parsed to provide an email address to receive the registration code.

One trick with this system is that the email address from Paypal is the one
the user used to register with Paypal. This may not be the same as the email
address the user provided when filling out the www.editomat.com/Purchase
page.

If the two addresses do not match, the email robot sends a reply to both
messages and apologises for spamming the user.

8 Designing a website is not a task for the faint of
heart:

The tclhttpd server and Tcl On Track provide the basic engines for the website.
The website uses a lot of CSS and a small amount of javascript to define look
and feel.

The website works. It has helpful information, interacts with Paypal for
purchasing the product and with an SQLite database for storing information.

Despite this, the editomat website is politely described as “lackluster”.

It’s up for the third major facelift, and another round of user opinions.

9 Taking a sharp turn:

Editomat went into a limited release in July. The immediate feedback was that
it needed to work with MS Word to be accepted. The initial users were willing
to cut/paste from a word document into Editomat and then modify their prose
in MS Word, but apparently those were outliers.

Fortunately, it’s relatively easy to merge a Tcl application with a Window
application.

Twapi (http://twapi.magicsplat.com/)and Cawt (www.cawt . com)
provide the basis for Editomat’s MS Word integration. TWAPI provides an
interface from Tcl to the Windows API, and Cawt adds a set of high-level tools
for Word interaction.

This is not to say it’s simple. Working with Word makes it obvious that the
application was initially designed to run in 64K on an 8088. It has existed for
decades with dozens of programmers extending it and adding new features.
Judging from the slightly different behaviors of features like highlighting text
and setting background shading, MS Word has been tweaked frequently with-
out re-working the original design.

The Tcl text widget, for all its faults, is fast and versatile. These are not
features of MS Word. Tk supports more colors than the human eye can distin-
guish. Word supports 16, of which only a few are useful.

9.1 Simple and too simple

The simple solution for word integration is to extract the text from MS Word,
insert it into the text widget and export it back to word when the rework is
complete.

This solution has several issues.

e MS Word users want MS Word controls, not Emacs.

e MS Word does not report font changes (like italics or bold), so this infor-
mation is lost.

9.2 Issues with Word

Editomat marks problem words and sentences by highlighting them in the text
window. Dlfferent issues are highlighted in different colors. MS Word also sup-
ports highlighting words, and supports multiple color highlights. It seemed
obvious to highlight the same words on the MS-Word screen.

In Tk, Editomat uses the text widget’s search support to find problems. This
search is fast. The Tcl regular expression engine finds a pattern in at most a few
milliseconds.

The MS Word search feature takes over 200 milliseconds. A 200 millisecond
time is adequate in an interactive session for finding the next occurance of a
word, but it’s abysmally slow when you are doing several thousand searches
to find repeated words.

The obvious solution is to extract the text from Word and search it with the
Tcl regular expression engine.

This isn’t as trivial as it sounds either. The Tk text widget indexes the dis-
play with line and character location. Word addresses characters by their posi-
tion in the text file.

However, this N’th character in the text does not map to N’th position on
the screen. Word uses non-printing characters to define format changes and
other internal information. The word API returns the printing characters, but
not the non-printing characters. This makes the position of a word in the ex-
tracted text differ from positions on the screen.

When you ask Word to return a single character at a given location, it will
return either a character, or an empty string if the character at that location is
non-printing. This feature provides a kludgy way to build a mapping table
from the character position in a string to the location in the MS Word display.

This technique requires reading characters one at a time to find the non-
printing characters. Despite this kludgy trick for reading the text, the overall
performance for finding repeated words was improved by about a factor of
five over using Word’s “Find” option.

9.3 Colors

In the Tk text widget, Editomat highlights problem words with a pastel color
that’s easy to distinguish from the black text.

MS Word supports 16 highlight colors, including black and white. Only 14
are available for marking text. Of these colors, half are so dark you can’t see
highlighted text behind them.

MS Word also supports adding background shading to letters. This fea-
ture is not implemented exactly the same as highlighting. Highlights can be
removed by selecting the entire text and setting the highlight to 0. Shading
can be overwritten, but the markers remain behind and new text added near
the shaded text is displayed with shading and the previous shading can’t be
reshown.

The result is that highlighting is easy to use, but can’t be mapped back to the
expected colors defined in the Tk widget. Background shading can be mapped
to Tk colors and is more versatile, but is harder to unset or rework.

10 Conclusion:

Making a functional Tcl/ Tk application is fast and easy.

Making one with all the features for a commercial release is not quite so
simple, but Tcl and Tk have features to make this easier than other languages.

Intellectual property can be protected by wrapping the application, and
byte-code compiling or encrypting the body of the application.

Regression testing a Tk GUI can be done withTkTest. An advantage of Tk
and TkTest is that the test harness can introspect into the running application.
This feature lets you confirm that GUI actions affected the expected internal
structures and allows internal functions to be run and confirm that the GUI
was modified appropriately.

The tclhttpd engine, Apache/Rivet, or AOLServer are all good httpd servers
to deliver web pages or Web Services and process forms. Making an attractive
website is orthogonal to the engine.

Making any application work within the MS-Word framework is non-trivial.
The Tcl tools TWAPI and Cawt make working with the Windows API in Tcl as
easy as developing in Visual Basic and easier than developing a C# application.

The bulk of the effort in moving an application from ”it works” to a com-
mercial release is not a technical problem. It’s a function of adding extra fea-
tures and paying attention to design and desired functionality.

