
Exact real arithmetic for Tcl
Kevin B. Kenny

1 Introduction
Once in a great while, the programmer has need for
floating point arithmetic in greater precision than the
hardware provides. This capability is usually not
performance critical, since most performance critical code
deals with measured quantities in the physical world,
where it is hard to imagine a measurement precision that
exceeds the sixteen or so decimal digits provided by
standard IEEE-754 double precision arithmetic. Instead,
the high-precision arithmetic is used to guard against
catastrophic loss of significance, where a difference is
computed between floating point numbers of nearly the
same magnitude, or against accumulation of roundoff
errors. In the course of developing numeric software, the
analyst will usually rectify these problems as a matter of
course, but the need arises to verify that nothing has been
missed, and to compute intermediate constants (such as
coefficients of power series) so that they are guaranteed
accurate.

Unfortunately, it is often extremely difficult to determine
in advance what precision will be required for these
calculations. Using interval arithmetic can often give an
indication of what precision results are known to, and then
the analyst can determine the intermediate precision
through trial and error, but this task is laborious. Moreover,
the required precision may depend on the input data.

This paper presents a library that avoids these issues by
representing numbers as algorithms, rather than as streams
of digits. Each number's representation is a TclOO object
that has methods to compute the number's value by
successive approximation, keeping the number bounded by
an ever-decreasing interval at each step. The library
provides algorithms for arithmetic, for real powers and
roots, and for the elementary functions.

The chief drawback to this approach is that not all numbers
are computable! (The set of reals is not countable, while
the set of computable numbers is.) Moreover, equality of
two numbers in this scheme is undecidable. Deciding
when two numbers, both specified by algorithms, are equal
is equivalent to the Halting Problem. Nevertheless, despite

these limitations, arithmetic on the computable numbers is
useful for the sort of applications (software testing and
high-precision development of constants) envisioned here.

2 Motivation
Floating-point arithmetic has acquired a certain, mostly
deserved reputation for being fraught with peril. Even
fairly simple calculations sometimes fail quite badly if its
vagaries are not considered. For instance, consider the
high-school solution to the quadratic formula

a x2
+b x+c=0 :

x=
−b±√b2

−4a c
2a

.

Let's attempt to do a naïve implementation of the quadratic
formula in floating point, and examine the result.

proc quad1 {a b c} {
 set d [expr {sqrt($b*$b - 4.*$a*$c)}]
 set r0 [expr {(-$b - $d) / (2. * $a)}]
 set r1 [expr {(-$b + $d) / (2. * $a)}]
 return [list $r0 $r1]
}

Choose the coefficients a, b , c to have the two roots

x=−200, x=7.5⋅10−15 , performing the calculations in
floating point. So far, all calculations are close to machine
accuracy:

a=1,b=200.0, c=−1.5⋅10−12

But what happens when we run the high-school quadratic
formula on this set of parameters? The large root

x=−200 comes out to machine precision, but the small
root is precise to zero significant figures. Even the leading
digit is wrong.

% puts [quad1 1. 200. -1.5e-12]
-200.0 1.4210854715202004e-14

What's gone wrong here? If we look at the intermediate

result d=√b2
−4 ac , we'll see that it prints out as

200.00000000000003

This value is so close to 200.0 that subtracting the two

gives a value that is off by a large factor. Instead of the

correct value of 1.5⋅10−14 , what prints is:

2.8421709430404007e-14

nearly a factor of two too high. Subtracting two nearly
equal quantities has caused a catastrophic loss of
significance.

An experienced numerical analyst will, possibly with some
effort, be able to rework the procedure to avoid ever losing
significance in the numerator of the result, by observing
that

−b+√(b2
−4 ac)

2a
=

2c

−b−√b2
−4 a c

,

and rewriting the procedure:

proc quad2 {a b c} {
 set d [expr {sqrt($b*$b - 4.*$a*$c)}]
 if {$b < 0} {

set s [expr {-$b + $d}]
 } else {

set s [expr {-$b - $d}]
 }
 set r0 [expr {$s / (2. * $a)}]
 set r1 [expr {(2. * $c) / $s}]
 return [list $r0 $r1]
}

The new procedure is immune to this particular pathology:

% puts [quad2 1. 200. -1.5e-12]
-200.0 7.5e-15

But even the experienced analyst will have a greater
challenge when asked how to address the loss of

significance when b2
≈4 a c. Fortunately, this case

causes “only” the loss of about half the significant digits of
the result. For instance, consider:

% puts [quad1 94906265.625 \
 -189812534. 94906268.375]
1.0000000144879793 1.0000000144879793
% puts [quad2 94906265.625 \
 -189812534. 94906268.375]
1.0000000144879793 1.000000014487979

(The correct answers, to IEEE precision, are 1.0 and
1.0000000289759583.) [Kahan 2004]

At this point, the analyst will mutter wisely about things
like “internal quad precision for intermediate results,” and
“Kahan's summation algorithm,” and offer to start a project
to assess sensitivity of the results to the initial parameters,
and you realize that you are going to be out a lot of money
letting him pursue this – and all for what started out a four-

line procedure.

Of course, most floating-point calculations never trip over
troubles quite this bad – these results are somewhat
contrived. Nevertheless, we sometimes want to know that
we have the exact answer, without worrying about
intermediate precision. We may be doing software testing,
and attempting to verify that our floating calculations have
not gone far astray in test cases. Or we may be developing
a numerical library, in which we need some constant like

ln (√2π) and want it to full machine precision so that

we can promise results to some level of accuracy. In these
cases, performance is generally not an issue. We don't care
that the machine might take a very long time to get the
answer. We merely care that the answer is correct.

3 Possible approaches

3.1 Extended precision
The first approach to doing calculations that suggests itself
is simply to extend the precision of results beyond the
machine's native precision. This is what was historically

chosen by the Unix calculator bc [Cherry & Morris

1996], and by the mpexpr extension to Tcl [Poindexter] .

We can gain a good deal of confidence by repeating our
calculations at several levels of precision, and seeing
where the results appear to stabilize. Unfortunately, while
this approach certainly improves on the naïve one, it
provides no guarantees. We can never be sure that some
catastrophe is not lurking, to be revealed by the next
increase in precision that we will try. Full certainty can be
provided only by the same sort of laborious numerical
analysis that we are trying to avoid.

3.2 Streams of digits
If an extended, but fixed, precision cannot achieve what
we are after, the next possibility that suggests itself is to
have an indeterminate precision. We could represent a
number by a procedure, possibly a coroutine, that produces
a stream of decimal or binary digits. Expressions could be
represented by procedures that take their arguments, and
combine the streams using grade-school arithmetic to
produce sums, differences, products, quotients, and so on.

We do not need to go very far to see where this approach
fails us. Let's assume that we use streams of decimal digits,

and attempt to compute the simple expression 3⋅(1 /3) .

The right-hand factor is, of course, 0.333…, and the

multplying by 3 yields 0.999…. When the product
procedure tries to decide what digit to emit to the left of
the decimal point, it goes into an infinite loop. It has no
knowledge that the stream representing 1/3 will be an
endless stream of 3's: perhaps it will be 0.3333….4. For
this reason, it must simply loop, consuming more and
more 3's, trying to determine whether the 0.999… will
ever carry and yield a number greater than 1. In fact, this
problem is fundamental to a computational structure for
the real numbers, and is the problem that Alan Turing was
attempting to address in his most famous paper, the one in
which the Turing Machine was first introduced. (In order
to attack it, he had to show that the problem is
fundamentally undecidable. If the stream of 3's is produced
by an arbitrary program, the problem of deciding whether
something other than a 3 will ever be emitted is equivalent
to deciding whether the program will ever halt.

3.3 Continued fractions
The next method that suggested itself was to represent real
numbers as continued fractions, representing a real number

x as a stream of integers a, b , c ,… (b ,c ,...≥1)

such that

x = a+ 1

b+
1

c+
1
⋱

.

This representation solves the problem of 0.333...⋅3,

(and indeed any other problem in rational arithmetic),
because the continued fraction representations of all
rational numbers terminate. R. William Gosper expounded
on continued fractions as an approach to perfect arthmetic
as part of the eclectic but seminal paper HAKMEM
[Beeler,Gosper & Schroppel 1972] , and developed the
theory further in an unpublished (but widely circulated)
paper that again urged developers to consider the
approach. He presented a simple algorithm for the four
arithmetic operations and for square roots.

Jean Vuillemin expanded on Gosper's work to show how
fundamental constants such as e and π , general
powers and roots, and the elementary functions could all
be computed with continued fractions [Vuillemin 1988] .

The author of the current paper went as far as to implement
a fair fraction of a Tcl library for continued-fraction
calculations, before stumbling over the same problem that
occurs with digit streams: arithmetic over continued
fractions is not decidable. The problem appears as soon as

one tries to multiply the square root of 2 by itself.

√2=1+ 1

2+
1

2+
1
⋱

A program trying to output the integer part of (√2)
2

will consume successive approximations to the continued
fraction:

“ √2=1+1 / z is between 1 and 2, so its square is
between 1 and 4. I don't know the integer part, so I need a
better approximation.”

“ √2=1+1 /(2+1 /z) is between 4/3 and 3/2, so its

square is between 16/9=1.777… and 9/4=2.25. I don't
know the integer part, so I need a better approximation.”

“ √2=1+1 /(2+1 /(2+1 /z)) is between 7/5 and 10/7, so

its square is between 49/25=1.96 and 100/49 = 2.0408…. I
don't know the integer part, so I need a better
approximation.”

We have once again hit the Halting Problem, just as
before. As soon as the algorithm that is producing

a, b , c ,.. . outputs an endless string of 2's, the integer
part of the product remains undetermined. As soon as it
outputs anything else, the integer part is known.

Gosper was clearly aware of the problem even in 1972,
and suggested solving it by allowing non-positive values
for b, c , d , This change essentially would allow a
stream to retract an earlier result and replace it with a
different one. He never developed an effective
computational procedure based on this scheme. Eventually,
David Lester did reduce the theory to an effective
procedure, but his algorithms were fairly complex,
requiring that up to seven terms of a continued fraction be
consumed before one result term could be produced, and
requiring fairly extensive auxiliary tables [Lester 2001] .

3.4 Möbius transformations
Before attempting to impement Lester's algorithms in a Tcl
continued fraction library, the author stumbled upon
another representation for the real numbers: sequences of
Möbius transformations (also called linear fractional
transformations) [Potts 1998]

 y= a x+b
c x+d

.

These transformations have properties that make them

useful computationally.

First, if x≥0, and b /d ≤ a/c , then y lies in

the closed interval [b/d ..a /c] . If instead

b /d ≥ a/c , then y lies outside the open interval
(a /c ..b /d) . Every Möbius transformation therefore

represents an interval of rational numbers. If a=c and

b=d , then the matrix represents a single rational
number, and the value of x is immaterial.

Second, Möbius transformations are composable. If
x=(a y+b)/(c y+d) and y=(e z+ f)/(g z+h) ,

then x=
(a e+b g)z+(a f +b h)
(c e+d g)z+(c f+d h)

.

This formula is itself a Möbius transformation. The
mathematical reader will recognize that it is simply a
matrix product. It will therefore be convenient to represent
Möbius transformations as matrices, and write:

[a b
c d]⋅ [e f

g h] = [a e+b g a f +b h
c e+d g c f+d h] .

It is also useful to consider matrices that are scalar
multiples of one another as being equivalent, since

pa x+ pb
pc x+ pd

=
ax+b
c x+d

for any p≠0.

Third, continued fractions map gracefully into Möbius
transformations. The number represented by

x = a+ 1

b+
1

c+
1
⋱

is the same number as that represented by the Möbius
transformation product

[a 1
1 0]⋅ [b 1

1 0]⋅ [c 1
1 0]⋯.

This correspondence immediately implies that all of
Gosper's and Vuillemin's algorithms for continued
fractions can be brought forward into the algebra of
Möbius transformations.

Finally, there is a special form of Möbius transformation
that offers an effective calculation procedure. It works
around the problem of decidability by using overlapping
intervals to represent numbers. Any number near the edge
of an interval has an alternative representation that starts

with another interval, so that it only finite information is
ever required to emit the next transformation. A
transformation, once emitted, is never retracted, and the
interval represented by the product of the transformations
decreases monotonically in width. In this way, every step
makes progress.

4 Representing real
numbers

4.1 Fundamental entities
The implementation of exact real arithmetic begins with
three fundamental objects: 2-vectors, 2×2 matrices, and
2×2×2 third-order tensors, where all components are
integers. A vector is simply a list of integers, a matrix is a
list of its two columns, and a tensor is a list of its two
matrices.

A vector {a b} represents the rational number

a /b. We assume that a and b are not both zero.
(a≠0,b=0 is permissible, and represents an infinite
quantity, of unknown sign.) By convention, we represent
fractions in lowest terms, and cast out the greatest common
divisor when necessary.)

A matrix

[a b
c d]

represents the Möbius transformation
x=(a y+b)/(c y+d). It also, as we have seen,

represents the interval [b/d ..a /c] . Once again,

multiplication by a scalar does not change what a matrix
represents, and we cast out any prime factor common to all
four elements. The two elements in a column cannot both
be zero, and the matrix cannot be singular. (Equivalently,
the second column cannot be a scalar multiple of the first,
or the endpoints of an interval cannot both be the same
point.)

A tensor,

[a b
e f | c d

g h]
represents a bilinear fractional transformation of two
variables:

z = a x y+b x+c y+d
e x y+ f x+g y+h

.

Like vectors and matrices, tensors do not change what they
represent when multiplied by a scalar, and are
conventionally represented in lowest terms.

There are tensors that represent all four of the arithmetic
operations:

T+=[0 1
0 0 | 1 0

0 1] ,
T -=[0 1

0 0 | −1 0
0 1] ,

T×=[1 0
0 0 | 0 0

0 1] ,
T ÷=[0 1

0 0 | 0 0
1 0] .

If v is a vector, M and N are matrices, and
Ψ is a tensor, then the products M⋅v and M⋅N

are defined in the conventional way. The product of a
matrix and a tensor is

[p q
r s] ⋅ [a b

e f | c d
g h]

= [pa+qe pb+q f
r a+s e r b+s f | pc+qg pd+qh

rc+sg rd+sh] ,
that is, it is the result of matrix multiplying the matrix
independently with the two matrices that make up the
tensor.

Tensors may be multiplied on the right by vectors in two

different ways, Ψ⋅L v and Ψ⋅RV . These correspond to

replacing x or y , respectively, with p /q in the
formula

z =
a x y+b x+c y+d
e x y+ f x+g y+h

.

[a b
e f | c d

g h]⋅L [pq] = [a p+c q b p+d q
e p+g q f p+hq]

[a b
e f | c d

g h]⋅R [pq] = [a p+b q c p+dq
e p+ f q g p+h q] .

Left and right multiplication of a tensor by a matrix is
defined so as to satisfy the associative laws

(Ψ⋅L M)⋅L v = Ψ⋅L(M⋅v) , and
(Ψ⋅R M)⋅R v = Ψ⋅R(M⋅v) .

Matrix transposition is defined in the usual way. Tensor
transposition is defined as swapping columns.

[a b
c d]

T

= [a c
b d] .

[a b
e f | c d

g h]
T

=[a c
e g | b d

f h] .
Matrix inversion is somewhat unusual. Since a scalar
multiple a M of a matrix M has the same meaning
as the matrix itself, there is no step of dividing by the
determinant, which in turn means that the determinant may
be zero, and inversion is still safe. We simply have the
pseudo-inverse

[a b
c d]

−1

≃ [d −c
−b a] .

All of these operations are simply defined as functions that
operate on Tcl lists.

4.2 Expression trees
The next layer of the software wraps vectors, tensors and
matrices up in expression trees that define how
mathematical expresssions are to be evaluated. The

fundamental base class, Expression, has three

subclasses, V, M, and T, which encapsulate vectors,

matrices, and tensors respectively.

The V class encapsulates a vector of two integers, n and d,

and represents the rational number n /d.

The M class encapsulates a matrix M, and represents the

result of applying that matrix to the result of another
expression. The other expression may be known at compile

time (the Mstrict subclass handles this case), or may be

constructed lazily on demand. If it is constructed lazily, the
matrix is cached once constructed, so that lazy evaluation
happens only once.

The T class encapsulates a tensor Ψ, and represents the

result of applying Ψ to two other expressions:

(Ψ ⋅L e1)⋅R e2 . Once again, the expressions may be

known at compile time (Tstrict), or may be constructed

lazily on demand. Lazily-constructed expressions are
cached.

Since the lazy evaluation, and the actual numeric
calculation, results in a great number of ephemeral objects
being passed around, the Expression base class is reference

counted. The caller claims a reference by calling [$a

ref] on some expression $a, and releases the reference

with [$a unref]. Objects are constructed with a zero

reference count, and deleted when an unref operation

results in a zero reference count again.

4.3 Expressions
The command at the center of the exact arithmetic system

is math::exact::exactexpr. This command is

similar to the Tcl expr command, and accepts a single

argument that is the expression to be evaluated. The result,

instead of being the value, is an Expression object that

represents the value. It is returned with a reference count
of 1.

The exactexpr command is built from a conventional

expression grammar using an Aycock-Early-Horspool

parser generator (the grammar::aycock module in

Tcllib). The expressions may include:

• integers
• the fundamental constants pi and e
• references to Tcl variables, which are expected to

contain Expression object instances
• mathematical functions such as sqrt and sin
• parentheses
• the four arithmetic operations +, -, *, /
• the exponentiation operation **

Most of these are translated in a straightforward fashion.
(There are compile-time optimizations that apply, which
are not discussed here, mostly having to do with constant

folding.) An integer x is represented by the vector [x1].
Unary negation is represented by the matrix [−1 0

0 1]
applied to its argument. The four arithmetic operators, as
we have seen above, correspond to tensors, which are
applied to their left and right operands.

4.4 Infinite expression trees
Exponentiation and the mathematical functions are rather
more complicated, and generally involve lazy evaluation.
The mathematical algorithms that construct the lazy
objects are somewhat complex, and the interested reader is
referred to the source code (which, in turn, references the
relevant papers) for details. As a simple example, though,
let's work through calculating a square root.

If a program requests [exactexpr {sqrt(2)}], that

is translated into an instance of the SqrtWorker class

(which inherits from T). This class's tensor is always the

constant:

Ψ √ = [1 2
0 1 | 1 0

2 1] ,
representing the function:

x y+2 x+ y
x+2 y+1

.

The left operand, x, is the quantity whose square root is to
be found, and the right operand, y, is a copy of the

Sqrtworker object. The expression (which is lazily

constructed) is an infinite sequence

Ψ √⋅L x⋅RΨ√⋅L x⋅R Ψ √⋅L x⋅R⋯

Let's fold x=2 into the tensor, since we are computing

sqrt(2). The function that will be iterated becomes

3 y+4
2 y+3

, or the matrix [3 4
2 3] .

The expression becomes the infinite product:

[3 4
2 3]⋅[3 4

2 3]⋅[3 4
2 3]⋅⋯.

Let's verify for ourselves that this is doing what we want.
After the first iteration, the product is the matrix itself,

asserting that 4 /3≤√2≤3 /2. (This is indeed the case.)

If we need more information than this, we lazily request
another layer of the expression tree, and compose the two
matrices, giving us the matrix

[17 24
12 17] .

This asserts that 24 /17≤√2≤17 /12. Once again, this
is indeed the case, and it has refined the estimate so that
we know that the leading decimal digits are 1.41. If we
need more digits than this, we turn the crank one more
time, obtaining the matrix

[99 140
70 99] .

and another decimal digit, making the leading digits 1.414.
Further iterations refine it to 1.41421, 1.414213,
1.41421356, adding a digit or two of precision with each
level of expression evaluated.

5 Evaluating real numbers
With the representation of real numbers as (possibly
infinite) trees of tensor and matrix products, with vectors
at the leaves, we can now begin to consider how to go

about evaluating real numbers and producing results in a
usable form, such as decimal fractions or rational numbers
together with statements of precision. The library does this
by converting numbers to streams of simple matrices, with
only a few constant matrices allowed in the streams. These
are similar to streams of digits in conventional
representation, except that digits can take on negative
values as well as positive ones. The result is a redundant
representation, in which any number can be represented in
multiple ways. The redundancy means that at any given
digit position, a decision can be made without needing an
infinite amount of precision. Problems such as the infinite

loop computing √2×√2 no longer appear.

5.1 Sign-and-magnitude
representation

The assertion that a /c≥(a x+b) /(c x+d)≥b /d , which

we have used in asserting that matrices represent intervals,
fails if x is negative. The library handles this by exporting
up a 'sign matrix' as the first element in the stream. The
sign matrix is a redundant division of the number line into
quadrants:

+ : x≥0 0: |x|≤1
−: x≤0 ∞ : |x|≥1.

For each of these quadrants, there is an associated matrix:

S +=[1 0
0 1] S0=[1 −1

1 1]
S−=[0 1

−1 0] S∞=[1 1
−1 1]

so that if x=S y is in a given quadrant, then y is
positive (when vectors are given their interpretation as
rational numbers). Each of the subclasses of

Expression supports a method, getSignAnd-

Magnitude, that returns a pair consisting of an

appropriate sign matrix S and an expression y such that
x=S y and y is nonnegative. The method absorbs

information from subexpressions as necessary to determine
which sign matrix to use.

5.2 Digit streams
After the sign and magnitude extraction, the nonnegative
numbers that remain are broken down into products of
'digit matrices'. There are three of these, which divide the
non-negative half of the number line into overlapping
pieces:

−1: 0≤x≤1
0 : 1 /3≤x≤3
1: 1≤x .

The corresponding matrices are:

D−1 = [1 0
1 2] D0 = [3 1

1 3] D1 = [2 1
0 1]

Numbers usually begin with a series of D−1 or D1

matrices that fix the order of magnitude. A number that

begins with D1 is at least 1; one that begins with

D1 D1 is at least 3; and in general if a number begins

with k D1 matrices, its value is at least 2k
−1.

Similarly, a number beginning with k D−1 matrices has

a value that is at most 1/ (2k
−1) .

After the leading string of repeated D−1 or D1

matrices, the rest of the number can be thought of as a
significand. Each digit cuts the size of the interval in which
the number can appear roughly in half. The number of
digit matrices needed to represent a quantity x to some
desired degree of precision can therefore be estimated as

|log2 x|+b, where b is the number of bits of

significance that are desired.

Just as each of the subclasses of Expression supports

getSignAndMagnitude, each subclass supports a

method, getLeadingDigitAndRest, that extracts the

leading digit matrix D, returning a pair consisting of D and
an expression x=D y , with y still nonnegative. It
absorbs information from subexpressions as necessary to
compute the digit.

5.3 Digit exchange
Both of the preceding two sections have spoken of
'absorbing information from subexpressions', but have
glossed over what absorption of the information means. In
both cases, what 'absorbing information' means is that a
digit matrix will be extracted from a subexpression and
composed into the current matrix or tensor. (This, of
course, may in turn cause the subexpression to need to
absorb information from its subexpressions, and so on.)
Denoting the value of the current expression by x, the
process of exchanging digits with subexpressions
continues until for some digit matrix D, we can prove that

D−1 x represents a non-negative number for any value
of the subexpressions. At that point, it is safe to return the

digit D and the result of left-multiplying D−1 with the

current matrix or tensor. Since the size of the interval
represented by a subexpression roughly halves with each
digit emitted, and since the ranges of intervals represented
by the digit matrices overlap, this is an effective
procedure: it never requires an unbounded amount of work
to extract the next digit matrix.

5.4 Formatting for printing
The asPrint method is responsible for formatting an

exact real number for display. This method accepts the
number of digit matrices to process. It composes those
matrices, resulting in a representation of the number as a
rational interval. It then formats the number in floating
point “E format” (significand and power of 10),
terminating the significand at the point where the interval
becomes wider than 1 unit in the least significant place.
The true value of the real number as printed is always
within ±1 unit in the least significant digit.

6 Examples
Let's run through a few examples to see how the library
works in a few practical cases. First, let's try to solve the
quadratic formula over exact real numbers. We won't
worry about the roundoff errors from the first section, and
simply let the machinery request enough precision from
the intermediate results to give the requested accuracy of
the final answer.

We'll write a procedure analogous to quad1 that operates

on exact reals:

proc exactquad {a b c} {
 set d [[exactexpr {
 sqrt($b*$b – 4*$a*$c)
 }] ref]
 set r0 [[exactexpr {
 (-$b - $d) / (2 * $a)
 }] ref]
 set r1 [[exactexpr {
 (-$b + $d) / (2 * $a)
 }] ref]
 $d unref
 return [list $r0 $r1]
}

The structure is identical to quad1, except for reference

count management. Calling it also requires only changes to
notation and to reference count management.

set a [[exactexpr 1] ref]
set b [[exactexpr 200] ref]
set c [[exactexpr {
 (-3/2) * 10**-12
 }] ref]

lassign [exactquad $a $b $c] r0 r1
$a unref; $b unref; $c unref
puts [list [$r0 asFloat 70] \
 [$r1 asFloat 110]]
$r0 unref; $r1 unref

As we might hope, the results are to full precision, with no
worrying about the near-cancellation of significance in
subtraction:

-2.000000000000000075e2
7.499999999999999719e-15

Similarly, when we attempt the arguments that gave near-
cancellation under the square root sign, there is no
problem. The near-multiple root is recovered to IEEE-754
double precision perfectly well:

set a [[exactexpr 94906265625/1000] ref]
set b [[exactexpr -189812534] ref]
set c [[exactexpr 94906268375/1000] ref]
… other code as before …
1.0000000000000000e0 1.0000000289759583e0

And we can do other high-precision calculations just as
nicely. For instance, we can easily disprove the old canard

that eπ√163 is an integer:

% set r [[exactexpr {exp(pi()*sqrt(163))}]
ref]
% puts [$r asPrint 162]
2.6253741264076874399999999999925e17
% $r unref

Or we can solve a problem due to W.Kahan: [Kahan 2005]

Let x0=4,

x1=4.25, xk+1=108−
815−1500 /xk−1

xk−2

.

What is x100? When calculated in floating point, to any

reasonable precision, straightforward coding of this
question gives the answer 100.0. But the correct answer is
very close to 5.

The results of the first 25 iterations are shown in Table 1.
The first eight or nine iterations are fairly close between
standard IEEE-754 double precision and exact arithmetic.
By the eleventh, however, the floating point arithmetic is
clearly trending in the wrong direction, and in the next
couple of iterations, it falls apart altogether.

Table 1. Kahan's problem: IEEE-754 vs. exact
arithmetic

Iteration IEEE-754 Exact

 1 4.47059 4.47059

 2 4.64474 4.64474

 3 4.77054 4.77054

 4 4.85570 4.85570

 5 4.91085 4.91085

 6 4.94554 4.94554

 7 4.96696 4.96696

 8 4.98004 4.98004

 9 4.98791 4.98798

10 4.99136 4.99277

11 4.96746 4.99566

12 4.42969 4.99739

13 -7.81724 4.99843

14 168.93917 4.99906

15 102.03996 4.99944

16 100.09995 4.99966

17 100.00499 4.99980

18 100.00025 4.99988

19 100.00001 4.99993

20 100.00000 4.99996

21 100.00000 4.99997

22 100.00000 4.99998

23 100.00000 4.99999

24 100.00000 4.99999

25 100.00000 5.00000

7 Limitations
Chief among the obvious limitations of the

math::exact package is performance: it is atrociously

slow and consumes a great deal of memory. Performance
is rather beside the point: it is built to give exact results
always, and not highly optimized. There are other
limitations that are more subtle but likely to be more
important in practice.

7.1 Floating point
The reader may have noticed that the expression grammar
does not support floating point notation. The problem with
floating point notation is that, in a world of exact
arithmetic, it is ambiguous. Consider the simple constant
0.3333333333333333. What does this constant mean?
There are three rational numbers that make roughly equal
sense, but are not equal.

• The rational number
1
3

. This constant is the

rational number with the smallest denominator
that will yield the given constant in IEEE-754
floating point. (To a human eye, this is probably
the most reasonable answer.)

• The rational number
3333333333333333
10000000000000000

.

This constant is the obvious interpretation of the
floating point number as printed.

• The rational number
6004799503160661

18014398509481984
.

This is the exact value of the IEEE-754 floating
point constant that prints out as
0.3333333333333333.

It seems better to let the programmer write one of these
explicitly, rather than trying to divine which interpretation
is intended in any given case.

7.2 Reference counting
Using reference counts at script level is always unweildy,
and invites both premature object destruction and memory
leaks. Nevertheless, exact reals are heavyweight objects
that we do not want to have to copy when we copy one
variable to another, pass a value to a procedure, or have a
procedure return a value. Passing objects by reference (i.e.,
by command name) seems like an obvious approach.

A possible workaround is to accept “fragile references.”
The reference to the object that represents a number would
be carried as the internal representation of a Tcl_Obj.
Copying a variable holding one of these objects would
result in incrementing the reference count in the Tcl_Obj.
When the Tcl_Obj is deleted, so is the underlying exact
value.

As the name suggests, these references are fragile. If the
object name is interpolated into a string, used as a
singleton list, used as a hash key, or otherwise used in a
way that causes its internal representation to shimmer, the
reference to the underlying exact number will be lost and it

will be destroyed prematurely. This behaviour leads to
subtle bugs that are often difficult to locate.

Nevertheless, users of Tcl interfaces to managed code
systems such as Java, COM and .NET face the fragile
reference problem whenever they deal with a managed
object. It appears that they contrive to lead useful lives in
spite of the fragility. For this reason, a future version of

math::exact may offer fragile references with

automatic object reclamation as an option.

7.3 Comparison
Similarly, the math::exact package does not offer

comparison operators ==, !=, <, <=, >, and >= in its

expressions. The reason is that they are not decidable! In
order to decide whether 0.999… < 1, the library might
have to do an unbounded amount of work trying ever more
precise values, without ever arriving at an answer.

The solution to this problem is fairly well understood:
offer fuzzy comparison operators. For any rational number

ϵ>0, we can define a comparison operator

a≪ϵ b :={
1, if a < b−ϵ,

either 0 or 1, if b−ϵ≤ a ≤ b+ϵ
0, if a > b+ϵ.

and define similar operators ≫ϵ , ≈epsilon , and≠ϵ .

These operators require only finite precision, because they
are allowed to give any consistent answer for the given
tolerance ϵ . The correct value for ϵ will depend on
the application, so there must be a way to specify it in the
expression. Implementing this functionality awaits only the
specification of an appropriate syntax for it.

7.4 Safety
It is possible for user code to drive the math::exact

package into an infinite loop or a stack overflow.
Typically, this occurs when code requests something that is
not decidable: For instance, the command:

% set r [exactexpr {sqrt(tan(pi()/4)-1)}]

overflows the stack. The reason is that the sqrt function

is discontinuous at zero (it does not exist to the left of the
origin), and the code goes into endless recursion trying to

decide whether the value of the transcendental tan

function is less than or greater than 1. Some anomalies like
this one appear to be fundamentally unfixable, and the
code would be improved if there were enforced limits on
stack depth, run time, and size of intermediate results,
possibly with optimistic assumptions made for function
evaluations close to the edge of the functions' domains.
These changes are a fairly sizable project, and will likely
need to be attacked piecemeal.

8 Conclusions
The math::exact package, while clearly imperfect,

offers a proof of concept for how exact arithmetic can be
implemented for Tcl. It already has demonstrated utility for
performing high-precision calculation of fundamental
constants (such as coefficients for series or continued
fraction approximations to functions) and for software
testing (offering exact results so that code can be tested for
numerical instability). The intention is that the package
will appear in the next formal release of Tcllib.

References
Beeler, M., Gosper, R.W. and Schroppel, R.. 1972. HAKMEM.

http://dspace.mit.edu/bitstream/handle/1721.1/6086/AIM-239.pdf.

Cherry, Lorinda and Morris, Robert. 1996. BC – An Arbitrary Precision Desk-Calculator Language.
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.52.557&rep=rep1&type=pdf.

Gosper, R.W.. 1972. Continued Fraction Arithmetic.
http://perl.plover.com/yak/cftalk/INFO/gosper.txt.

Kahan, W.. 2005. How Futile are Mindless Assessments of Roundoff in Floating-Point Computation?.
https://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf.

Kahan, W.. 2004. On the Cost of Floating-Point Computation Without Extra-Precise Arithmetic.
http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf.

Lester, David. 2001. Effective Continued Fractions. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic,
163--. Washington, DC, USA: IEEE Computer Society.
http://apt.cs.manchester.ac.uk/ftp/pub/apt/papers/drl_ieee01.pdf

Poindexter, Tom. Mpexpr. http://mpexpr.sourceforge.net/.

Potts, Peter John. 1998. Exact real arithmetic using Mobius transformations. PhD diss., University of London.
http://peterpotts.com/pdf%20files/phd.pdf

Turing, A. M.. 1937. On computable numbers, with an application to the Entscheidungsproblem. A correction. Proceedings
of the London Mathematical Society. Second Series 43: 544--546.
https://www.wolframscience.com/prizes/tm23/images/Turing2.pdf

Turing, A. M.. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the
London Mathematical Society. Second Series 42: 230--265.
http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

Vuillemin, Jean. 1988. Exact Real Computer Arithmetic with Continued Fractions. In Proceedings of the 1988 ACM
Conference on LISP and Functional Programming, 14--27. New York, NY, USA: ACM.
https://hal.inria.fr/inria-00075792/document

	1 Introduction
	2 Motivation
	3 Possible approaches
	3.1 Extended precision
	3.2 Streams of digits
	3.3 Continued fractions
	3.4 Möbius transformations

	4 Representing real numbers
	4.1 Fundamental entities
	4.2 Expression trees
	4.3 Expressions
	4.4 Infinite expression trees

	5 Evaluating real numbers
	5.1 Sign-and-magnitude representation
	5.2 Digit streams
	5.3 Digit exchange
	5.4 Formatting for printing

	6 Examples
	7 Limitations
	7.1 Floating point
	7.2 Reference counting
	7.3 Comparison
	7.4 Safety

	8 Conclusions

