

Presented at the 22nd Annual Tcl Developer’s Conference (Tcl’2015)
Manassas, VA

October 19 - 23, 2015

Sean Deely Woods
Senior Developer
Test and Evaluations Solutions, LLC
400 Holiday Court
Suite 204
Warrenton, VA 20185

Introducing TOOL
 The Tcl Object Oriented Library

Abstract
With the advent of TclOO, the Tcl Community is in need of common design patterns on

which to build applications and utilities. Rather then descend into a myriad of domain specific
libraries; this paper presents the concept of a TOOL (Tcl Object Oriented Library). Borrowing
many of the conventions and idioms from Tcllib, the goal of TOOL is provide a common suite of
tools that are tested, documented, and ready for immediate deployment. Like Tcllib, TOOL will
be broken into modules by subject area. This paper will focus on the core classes as well as
tool::shed (a suite for building and distributing script and binary packages for Tcl.)

Introduction
We all use Tcllib. Tcllib has a lot of things going for it. It’s a one-stop shop for ton of handy

code. Compared to standard libraries in other languages, Tcllib’s code is of really high quality. It
has regression tests, and online documentation. Most of it even works!

We are entering a new era in Tcl development: Object Oriented (OO) code. OO Code is not
built with libraries, but with frameworks. Frameworks are a different style of programming. And
that different style of programming needs a different set of tools and practices than Tcllib
currently provides.

Code Recycling vs. Inheritance
A large conventional pre-OO project in Tcl uses a style that I call “code recycling.” Code

recycling is a bit like putting together a Frankenstein monster. The developer pulls together parts
from disparate sources. He/She then spends some effort grafting the different organs together.

A large-scale OO project in Tcl utilizes an inheritance-based style. Inheritance is a more like
putting together a creature at Jurassic Park. The developer starts with frameworks and splices
them together. Components share code, and combine holistically.

Forward Compatibility
Tcllib has been developed over a number of years across Tcl cores with a varying level of

capability. Some parts of the library can’t run as efficiently as is possible because it must
maintain support for those older Tcl cores. Some packages rely on binary packages that clash
with new core capabilities.

Removing that backward compatibility from Tcllib would be, if not a disaster, a crying
shame. Rather than radically alter Tcllib, TOOL is designed to operate side-by-side with it.

Live Documentation
Documentation in Tcllib is currently a batch process. The developer writes a .man file which

is then processed by the Swiss Army Knife (SAK) to produce the html file on the website.
However, the output of that batch process must, itself, be checked into fossil in order to be
published online. This has the potential to cause hate and discontent if two different branches
auto-generate their documentation and attempt to merge together.

OO Development often requires a glimpse into the internals of the framework. And if two
different branches have substantially altered the behavior of a class, the documentation needs to
be able to reflect that difference side by side.

For TOOL I have selected Markdown as the de-facto standard for embedded documents. We
have a Tcl implementation already. Fossil and GitHub can render Markdown on the fly. External
editors exist for it. And it’s not overly hostile to store as an Sqlite field.

Growth
Tcllib is undergoing some growing pains. Just the installed modules for version 1.17 weigh in

at nearly 10mb. Many distributions either dissect Tcllib into individual packages, or leave it out
of default installations to save on size. Which leads to the problem of modules in tcllib requiring
other modules in tcllib. In the end, to use any random part of Tcllib requires either:

1. The entire Tcllib needs to be installed locally
2. The local system has the ability to grab packages on demand
3. A packaged application has sorted out all of the dependencies ahead of time.

New Targets
Until now, Tcllib only supports pure Tcl packages, and packages which can be enhanced by

Critcl. In the wild, however, TOOL will need to support additional design architectures:
1. Pure Tcl Packages
2. Critcl enhanced packages
3. C Dynamic Libraries
4. C Static Libraries
5. Enhanced shells with extra binary capabilities
6. Self contained executables

Design Assumptions
TOOL begins with the assumption that the user is running Tcl8.6 or greater, and the facilities

present to read and create Zip files. The facilities are available now in Tcllib to build and extract
zip files. The ability to mount a zip file as a file system is available with the VFS extension. If
TIP 430 ever gets out of “Pending” status, that same capability will be available in the core.

TOOL Goals
So, what will TOOL be like then? TOOL is a suite of repositories, and not a single “one

distribution to rule them all.” The Goal for tool is that each project:
1. Focus on a set of related tasks.
2. Implement one or more packages.
3. Organize interdependent packages into modules.
4. Have its own ticket system and code maintainer team.
5. Utilize a common installer/integrator
6. Provide live documentation online
7. Support multiple versions of a framework simultaneously
8. Have curated metadata maintained by the actual developers

Distribution
TOOLs are distributed as some form of web-hosted repository. The initial implementation

will focus on distributing code via fossil repositories. If there is community interest (read that
someone else will take the time to write and maintain the code) the architecture could easily
support GitHub, SubVersion, CVSTrack, etc. The goal is that, in the end, developers can utilize
whatever hosting system meets their needs.

tool::core
Part of any good library is a foundation of tools worth using. TOOL the movement will be

include tool the framework. The tool framework introduces several programming style
innovations for Tcl programming. These keywords, methods, and notational shorthand add
commands to the oo::define namespace, and methods to oo::class and oo::object.

Extensions to [dict]
TOOL relies on extending the dict ensemble with several new commands.

dict getnull dictValue ?key…?
This command works like dict get, but instead of failing when asked for a non-existent

location it returns an empty list.
dict is_dict dictValue

Returns true if the data in dictValue contains a key/value list that could be interpreted as a
dict. Internally it uses a catch around dict size in an effort to prevent the value from being
shimmered into a list.
dict rmerge dict dict ?dict…?

Performs a recursive merge on two or more dicts. A value from the rightmost argument
overrides any value from an argument to the left. Unlike dict merge, this command will descend
into the leaves and branches of each dict. Any field which ends in a colon (:) is understood to be
a leaf node, and its value will not be broken down further.

dictobj methodname varname ?cases?
The dictobj keyword defines a method ensemble as well as an internal variable for the class.

This ensemble allows the internal variable varname to be manipulated in a matter that is similar
to the dict command in Tcl. Internally; the ensemble is implemented as a switch statement. To
allow the developer a means of providing custom functions, if a key value list may be given as a
third argument. The cases defined by that list are injected before
the standard cases. The implementation uses a templating
mechanism in which %VARNAME% will be substituted with he
variable name and %METHOD% will be substituted with the new
method name.
oo::define myclass dictobj shed shed {dump {return $%VARNAME%}}
myclass create myobj
myobj shed set name: {The nameless name}
myobj shed dump
> name: {The nameless name}
myobj shed exists name:
> 1

meta submethod ?arg…?
The meta keyword ensemble allows properties to be defined

for a class. Properties are inherited by descendant classes and
imparted onto objects of that class. Each object sees all of the
properties from its class, and it can overlay data from a local
variable config over it.

oo::define myclass meta set property color: blue
myobj meta get property
> color: blue
oo::class create myclasschild {superclass myclass}
mychildclass meta get property color:
> blue
mychildclass meta set property color: orange
mychildclass meta get property color:
> orange

Notifications
TOOL objects can subscribe to receive events from other objects. To facilitate that, all objects

have and two additional methods “notify” and “subscribe”.

notify eventtype cliendata
Send a notification to all subscribed objects that an event of eventtype has occurred. clientdata

is a free-form block of data that notifier produces and the subscriber is assumed to know how to
process.

subscribe senderpattern eventpattern script
Arranges to trigger script whenever a sender matching senderpattern sends an event with a

type matching eventpattern. The following patterns will be substituted into the call:
%sender% The object which sent the notification
%type% The type of event
%clientdata% The block of clientdata generated by the sender

to describe the event
%self% The object which received the event

mychild subscribe * heard {puts “%self% heard %sender%”}
myobj notify heard {}
> mychild heard myobj

NOTE: Notifications do not use the Tcl event loop. Any script specified by an object is
executed directly by the notify method. So avoid calling {while 1 {}}, “my destroy”, etc.

Delayed Gratification
When building GUIs, business logic, and otherwise coding a project more complex than

“HELLO WORLD!” objects often need to change state. Changing state may simply update an
internal variable. But many times altering state requires a major costume change, the
reconstruction of an onerous data structure, or setting off a cascade of other state changes.

If these state changes are processed as a pure reflex, the results can be chaos. Especially if
altering A triggers changing B, which changes C, which changes A again. To mitigate the Chaos,
TOOL borrows a mechanism from Tao called “Signal Pipelines.”

With signal pipelines, the developer builds chains of events, with markers for causes and
effects. When an event is received, rather than immediately act on the information, and object
logs that event in a list of signals recieved.

When tool::do_events is called, objects take turns processing their signal pipelines. Each
stage in the pipeline is only processed once per event. When processing the pipeline, the object
knows what stage triggers what other stage and what order to execute them in. It then builds a
coroutine to exercise every subroutine that was specified in the signal description.

As action scripts form a portion of a coroutine, it is possible to have a pipeline span multiple
calls of tool::do_event by invoking yield. Values returned by yield are ignored. A return will
terminate the coroutine. Objects are restricted to a single pipeline coroutine at a time. New
signals are collected until the current coroutine exits.

Imagine if we were to implement an autoconf style build system.
cd $srcpath
./configure
make all
install

The signal pipeline for that would be:
oo::define buildclass {
 meta set signal {
 configure {triggers: compile action: {puts configure}}
 compile {triggers: install action: {puts compile} follows: configure}
 install {action: {puts install} follows: compile}
 }
}
myobj signal configure
tool::do_events
> configure
> compile
> install
myobj signal install
tool::do_events
> install
myobj signal configure install
tool::do_events
> configure
> compile
> install

Object Grafting
TOOL objects utilize a technique of deputizing other objects to manage related functions. To

do this, every object has two methods graft and organ.

object graft methodname objname ?methodname objname…?
Forward all method calls for <methodname> to the object objname.

object organ all|methodname
Return the object that is handling calls to <methodname>. If all is specified, return a key

value list of methodname objname for all methods being forwarded.
Example
myobj graft db ::shed::sqliteobj
myobj <db> onecolumn {select uuid from human where name=’hypnotoad’}
> 3b8b8d62-5cc0-48bf-b589-f0d948941d0e
myobj organ db
> ::shed::sqliteobj

noop
As a convenience TOOL defines a global command noop. noop takes any arguments,

performs no actions, and returns an empty string. noop is designed to be a safe “object” to graft
for edge cases where a particular organ would be meaningless. (For example the <parent> of a
root node.)

tool::main
While TOOL can interact with the Tcl event model, large complex interactions tend to

confuse Tcl. Especially in the case of nested calls to update. To this end, TOOL provides a
never terminating while loop, which:

• processes scheduled events
• processes object notifications
• processes object coroutines
• calls “update” to allow the Tcl event loop to process

In place of the typical vwait forever, simply call tool::main. If you prefer to implement your
own loop, be sure to make periodic calls to tool::do_events.

tool::shed
To meet the need for a common installer interface, a new framework implements the Simple

Handy Extension Descriptor (SHED). SHED tackles the problem of understanding the structure
of software development project. SHED objects exist in 3 states:

1. As live objects in an interpreter
2. As static data within a SHED descriptor file
3. As static data posted to a URL
4. As static data within an Sqlite database

SHED Descriptor Files
The first and obvious choice for storing objects and data would the JavaScript Object

Notation (JSON). It is ready made for this sort of application. However, the JSON notation uses
a lot characters that are special to Tcl. To operate in a live interpreter
requires conversion to a form more digestible to tcl, namely dicts. XML
would be another good choice, but again, to work inside a live Tcl
interpreter it too would have to be converted to a dict.

SHED cuts out the middleman. It is a dict, a stylized dict, but a dict
nonetheless. SHED uses the last character of a field to indicate its
function.

• Elements that represent subordinate pieces of a data structure
have no suffix.

• Elements that are a terminal leaf end with a colon (:)
• Elements that are a list of objects end with a forward slash (/)

Knowing which elements are terminal leaves is essential when combining dicts. It prevents
blocks of literal data from being interpreted as key/value lists.

Every SHED compliant project will include a project.shed file in the top-level directory of
the source code. This file is machine generated by software utilizing the tool::shed package. The
shed package looks for guidance from human edited scripts located at shed.tcl,
support/shed.tcl, or script/shed.tcl. These scripts are actually invoked within a live project
object, and can employ my to exercise the object’s methods. When running the
::PROJECT_ROOT variable will indicate the path of the project being indexed.

trunk {
 leaf: value
 branch {
 leaf: value
 }
 objects/ {
 element {…}
 element {…}
 element {…}
 }
}

SHED Database
Having data running in a live interpreter can be handy for examining data from a single

project at a time. But the next great Teapot or Gutter is going to need to assemble all of these
views into a multiverse. And to that end, SHED has a database form. Each class of object defines
a chunk of a database schema.

SHED Classes
SHED breaks the world into 7 varieties of objects:

project A top-level project
distribution A means of distributing a project, products, or both.
release A distinct version of a project, packaged by a distribution
package A package callable from [package require]
module A collection of source files or installation products
human A human point of contact for any of these objects. Humans may be responsible

for authorship, maintenance, spiritual guidance, testing, etc.
product A human or machine-readable block of data. Examples: images, game maps,

documentation.
All classes for the SHED are contained in the tool::shed namespace. Non-exclusive variations

of classes are nested with dots (.). Exclusive variations of classes are nested with slashes (/).
examples:
Class Description
::tool::shed::distribution Base class for distributing software
::tool::shed::distribution.http Class which implements mechanisms for http distribution
::tool::shed::distribution/fossil A specific of distribution mechanisms that employs fossil
::tool::shed::distribution/github A specific of distribution mechanisms that employs github

The goals of this convention are threefold.
1. Avoiding murky relationships between classes
2. Allow for machine-readable shorthand
3. Allow SHED to be run inside of other programs

If we know a database property contains the name of a class, we can avoid having to store the
entire path to the class. Users can fill in simply “fossil” instead of ::tool::shed::distribution/fossil.

Object Methods:
Each class fills out a template of public access function.

constructor / destructor
SHED objects are implementing a JSON-like document with nested objects. To that end,

other SHED objects most often spawn them. Rather than try to spell all of this out in English, it’s
probably better to express in script:

constructor {superiorObj ObjName {script {}}} {
 tool::object_create [self] # Register an object with the TOOL Framework
 my variable subordinates # Initialize the dict which tracks
 set subordinates {} # subordinate objects
 my shed set name: $ObjName # Initialize the name: field
 if {$superiorObj eq {}} {
 my graft superior ::noop # This object has no parent
 } else {
 my graft superior $superiorObj # This object has a parent, graft it
 my graft {*}[my <superior> exported_objects] # And graft in any organs the parent exports
 }
 my Shed_Script $script # Read this object’s shed descriptor
}
destructor {} {
 tool::object_destroy [self] # Unregister the object from TOOL
 catch {my <superior> subordinate_unregister [self]} # Unregister the object from its parent
}

compute_uuid
Generate a UUID appropriate for this class. For most classes, this is a call to [uuid::uuid

generate]. However, some varieties of objects may choose to generate UUIDs based on
fingerprints provided by file object hashes, SCM tags, etc.

export
Return a snippet of SHED that describes this object and all subordinate objects.

exported_objects
Returns a key/value list of objects that any subordinate would need to graft to itself in order to

operate.

identify
Returns the name by which this object would like to be known. Usually the name: field from

shed.

search_compare other_object
Compare the current object to other_object. Return:

-1 This object should appear before other_object
0 This object is equivalent to other_object
1 This object should appear after other_object

search_match args…
Return true if this object matches the search criteria specified by the arguments. False

otherwise.

Shed_Links
Called by Shed_Script. Generate any implied links between this object and other objects

based on the spec parsed by Shed_Script.

Shed_Script SHED
Parse a block of SHED data and generate properties and subordinate objects.

Shed_Script_Level path SHED
Invoked from Shed_Script. Parse the topmost level of keys and values from SHED, farming

any subordinate elements to recursive calls to Shed_Script_Level or to objects generated by the
rules of SHED.

sql_delete dbobject uuid
Deletes the SQL representation of this object and its links.

sql_export dbobject
Generates an SQL description of this object and its links and injects that information into the

Sqlite connection at dbobject.

sql_import dbobject ?uuid?
Populates this object with data from dbobject, and generates and/or populates any subordinate

objects with data from dbobject. If uuid is specified, it will replace any stored uuid in this object.
If not specified, a previously configure uuid will be used.

subordinate_unregister object
Called by destructor of objects generated by this object. Destroy any links that this object may

have shared with the other object.

Class Methods:
Some rules of a class need to be applied without creating an object of that class. SHED

classes provide the following methods:

scan filepath
Return a SHED description of the file or directory specified by filepath. Returns an empty list

if :
• the file path does not exist
• the content is not appropriate for describing in SHED
• the path contains no data
• this class has no concept of files or directories

Dynamically Generated Methods
To implement the parser, the SHED module builds a container method into for each shed

class to manage children of the other classes. This method is an ensemble that provides the
following sub-commands:

class add objname SHED
Add a new object and link it to this class as objname, and impart on it the descriptor given by

SHED.

class best args…
Return the identity of the subordinate of type class which best matches the search specified in

args.

class best_object args…
Return the object of the subordinate of type class which best matches the search specified in

args.

class delete objname
Destroy a subordinate object of type class and named objname.

class export
Generates a SHED descriptor for all subordinate object of type class.

class exists name
Returns true if an object of type class and named name exists.

class find args…
Return a list of identities of objects that matches the description in args.

class import SHED
Generates objects of type class from the SHED descriptor SHED.

class info args…
Find the best object described by args and return a dump of its shed data dict.

class link name object
Generate a link of type class to an existing object object and call it name.

class list
Generate a list if identifiers for all links to objects of type class.

class object args…
Return a list of objects that matches the description in args.

class scan filepath
Scan filepath and generate any subordinate objects that would represent filepath.

tool::shed::human

Introduction:
A human is a reference to a human being or organization that authors, maintains, or

distributes code.

Expected Properties:
Field Format Description
handle: String Canonical handle of this person or organization within the

community (i.e. hypnotoad)
description: String Human readable description of this person or organization
uuid: GUUID A completely fictitious global UUID to track this individual

by. Helpful because names are not unique and are subject to
change.

full-name: String The full name of the individual or organization
email: Email address An email address
url: URL A URL to this individual or organization’s home page

Database Schema:
create table human (
 uuid uuid primary key,
 handle string,
);
create table human_property (
 human uuid,field string, value value,
 PRIMARY KEY (human,field),
 FOREIGN KEY(human) REFERENCES human(uuid) ON UPDATE CASCADE
);
create table human_object (
 human uuid,
 linktype string,
 objtype string, --application, human, package, etc.
 objuuid uuid, --Key in foreign table
 FOREIGN KEY(human) REFERENCES human(uuid) ON UPDATE CASCADE
);

::tool::shed::project

Description:
A project represents a project, online or on a developer’s local machine. The main

project.shed file defines a project object.

Expected Properties:
Field Format Description
description: Markdown A human readable description
distribution: String The name of the currently selected distribution
generated: UTC Time code Time stamp of the release that generated this shed file
release: String The name of the currently selected release
uuid: GUUID/SHA1 Hash A unique identifier for this project.
name: String Name for this project
short-name: String Shortened version of the name for the purposes of

building file paths, zip files, etc.

Database Schema:
create table project(
 uuid uuid primary key,
 name string
);
create table project_property (
 project uuid, field string, value value,
 PRIMARY KEY (project,field),
 FOREIGN KEY(project) REFERENCES project(uuid) ON UPDATE CASCADE
);

::tool::shed::distribution

Introduction:
A distribution is means of getting the source code or compiled product to the user.

Expected Properties:
Field Format Description
class: Class name Type of distribution. (i.e. fossil, github, tarball, teacup, zip)
url: URL Location for the project online
mirrors: URL list List of alternate locations

uuid: GUUID For official distributions, this UUID will be identical to the UUID of
the project. Alternative incarnation of a project will have a different
UUID.

name: String A name describing this distribution. The default distribution for most
projects should be called “official.”

Database Schema:
create table distribution (
 uuid uuid primary key,
 project uuid, name string,
 FOREIGN KEY(project) REFERENCES project(uuid) ON UPDATE CASCADE
);
create table distribution_property (
 distribution uuid, field string, value value,
 PRIMARY KEY (distribution,field),
 FOREIGN KEY(distribution) REFERENCES distribution(uuid) ON UPDATE CASCADE
);

::tool::shed::release
Introduction:

A release is a bundle of source code, executables, and/or data sets. Each release is considered
a child of a distribution. Distributions can have multiple releases. Releases are also given a
version number so that can be selected in numerical(ish) order.
Expected Properties:
Field Format Description
checkout: SCM Tag The tag from the SCM this release is derived

from
class: Class name Type of release. Valid values are descendants of

the ::tool::shed::release class.
distribution: List of distribution objects Which distribution this release is associated with.
profile: Teacup Profile For binary release, the teacup standard profile

name
status: Selection A description of the vitality of this release. Valid:

development, release, stable, deprecated.
timestamp: UTC Time stamp The latest check in from this release as of when

the SHED description was generated.
Database Schema:

create table release (
 uuid uuid primary key,
 version version, distribution uuid, name string, profile string,
 FOREIGN KEY(distribution) REFERENCES distribution(uuid) ON UPDATE CASCADE
);
create table release_property (
 release uuid, field string, value value,
 PRIMARY KEY (release,field),
 FOREIGN KEY(release) REFERENCES release(uuid) ON UPDATE CASCADE
);
create table release_object (
 release uuid,
 linktype string,
 objtype string, --application, module, package, etc.
 objuuid uuid, --Key in foreign table
 FOREIGN KEY(release) REFERENCES release(uuid) ON UPDATE CASCADE
);

::tool::shed::module
Introduction:

A module is a suite of re-usable code bundled into a release. A module can contain one or
more packages.
Expected Properties:
Field Format Description
author: Human UUID The original author of this module
class: Class name Type of module. Valid values are descendants of the

::shed::class::module class.
description: String Human readable description of the module
maintainer: Human UUID Point of contact for support
name: String Name of module
origin: Release UUID If this module is a copy from another project, which release
path: Local file path Path relative to the PROJECT_ROOT where this module

can be found
pkg-provides: {PKG VER} … List of packages and versions provided by this module
pkg-requires: Package List List of packages that are called on by this module
sources: List of files List of source files that implement this module
version: Version string Version number or sequence of this release
Database Schema:
create table module (
 uuid uuid primary key, name string
);
create table module_property (
 module uuid,field string, value value,
 PRIMARY KEY (module,field),
 FOREIGN KEY(module) REFERENCES module(uuid) ON UPDATE CASCADE
);
create table module_object (
 module uuid,
 linktype string,
 objtype string, --application, module, package, etc.
 objuuid uuid, --Key in foreign table
 FOREIGN KEY(module) REFERENCES module(uuid) ON UPDATE CASCADE
);

tool::shed::product
Introduction:

A product is a human or machine-readable block of data bundled into a release.
Expected Properties:
Field Format Description
class: Class name Type of product. Valid values are descendants of the

tool::shed::product class. Examples: application, image,
teapot

description: Markdown Human readable description of the product.
module: UUID Which module this product is derived from
name: String Name of product
pkg-provides: Package List List of packages this product provides when installed
pkg-requires: Package List List of packages that need to be present in the environment

for the product to be interpreted or displayed.
profile: Teacup Profile Which teacup profile does this product target.
Database Schema:
create table product (
 uuid uuid primary key,
 release uuid, module uuid, name string, profile string,
 FOREIGN KEY(release) REFERENCES release(uuid) ON UPDATE CASCADE
 FOREIGN KEY(module) REFERENCES module(uuid) ON UPDATE CASCADE
);
create table product_property (
 product uuid,field string, value value,
 PRIMARY KEY (product,field),
 FOREIGN KEY(product) REFERENCES product(uuid) ON UPDATE CASCADE
);
create table product_object (
 product uuid,
 linktype string,
 objtype string, --application, module, package, etc.
 objuuid uuid, --Key in foreign table
 FOREIGN KEY(product) REFERENCES product(uuid) ON UPDATE CASCADE
);

tool::shed::package
Introduction:

A package is a tcl package that is callable with [package require]. Packages are linked to
products and modules for installation and dependency resolution.
Expected Properties:
Field Format Description
author: Human UUID The original author of this application
class: Class name Type of application. Valid values are descendents of the

tool::shed:package class.
description: Markdown Human readable description of the application
file: Local file path For scripts, a path relative to the PROJECT_ROOT which

represents the top-level script to be invoked
maintainer: Human UUID Point of contact for support
name: String Name of executable
pkg-requires: Package List List of packages this package depends on
Database Schema:

create table package (
 uuid uuid primary key,
 release uuid, name string, version string,
 FOREIGN KEY(release) REFERENCES release(uuid) ON UPDATE CASCADE
);
create table package_property (
 package uuid, field string, value value,
 PRIMARY KEY (package,field),
 FOREIGN KEY(package) REFERENCES package(uuid) ON UPDATE CASCADE
);

Getting TOOL and SHED
tool::core, tool::shed, and tool::scgi are developed as part of the sherpa project.

(http://fossil.etoyoc.com/fossil/sherpa) All of the modules for tool are mirrored to Tcllib. Sherpa
also mirrors modules from tcllib upon which it depends. Tool code is checked into the odie
branch of tcllib, which is periodically merged into the trunk branch.

Using TOOL
Tool ships with a shed application script. The shed script maintains a configuration in the OS

user’s home directory. Shed understands several commands:

shed configure setting ?value?
Retrieve of set the local preference of setting. Setting can be one of the following:

profile Teacup compatible profile to assume if not stated
Default: Auto-detect

prefix Top-level location where SHED operates
Default: $HOME/tcl

sandbox Location where source code is unpacked
Default: $prefix/sandbox

download Location where repository databases, tarballs, etc should be downloaded
Default: $prefix/download

database Location of the master shed index
Default: $prefix/var/shed.sqlite

app-path Location to install applications
Default: $prefix/bin

lib-path Location to install libraries
Default: $prefix/lib

tclsh Tcl Shell to invoke for scripts
Default: Auto-Detect

user Configure the handle of the local user. Default: anonymous

shed database-rebuild
This function will search for any project.shed file located within the $sandbox. Each file will

be read, and indexed, and compiled into a fresh copy of the $database.
shed env-build

Place an alias in the current OS user’s ~/.aliases or ~/.bashrc file to allow him/her to invoke
shed as a local command. This command will also inject $lib-path into the auto_path of the
user’s .tclshrc file.
shed package-install-local package ?version?

Find a Tcl package as well as its dependencies in the local shed database, and install them to
$prefix.

shed shed-build filepath ?shedscript?
Explores a code repository rooted at

filepath, figures out its distribution
mechanism, takes a guess at its structure, and
writes a project.shed file into the root. If a
shedscript is given, the main project object
sources that script. If not shedscript is given,
the discover tool will look for one at
shed.tcl, scripts/shed.tcl, or
support/shed.tcl.

A shed script written to operate within the project object, and provide a picture of the file
structure for this repository, as well as any human curated metadata that would be impossible (or
impractical) to generate automatically.

Prior to invoking the shed script, the discovery system will automatically extract data from
fossil repositories, and auto-generate a placeholder distribution (official) and release (whatever
the current checkout is tagged as).

shed shed-discover shedfile|url
Read the contents of a local file or URL, and translate that data into records for the local

SHED database.
shed update

Download and apply updates to the SHED database from the teapot as well as any fossil
repositories unpacked into local $sandbox.

shed vfs-index vfsroot
Produce a pkgIndex.tcl file that contains a master index of every package loadable within

vfsroot.
shed vfs-install vfsroot profile {package ?version?} ?{package ?version?}…

Find a Tcl package as well as its dependencies in the local shed database, and install them to
the shed folder within a virtual file system under construction at vfsroot.

Submitting New Tools
TOOL does not depend on a centralized management system. Which is fortunate, because I

still haven’t worked out how to build one. My tentative scheme is to provide a central directory
where developers and distributers can register, and can post URLs to the SHEDs they maintain.
Better ideas or help to that end are welcome and appreciated.

#Simple shed script
my human add hypnotoad {
 role: author
}
my application scan $::PROJECT_ROOT/apps/shet.tcl
foreach path [glob $::PROJECT_ROOT/modules/*] {
 my module scan $path
}
my release add autosetup {
 description {An excursion built around autosetup}
 checkout: autosetup
}

Work still to be done
At the time this paper was written, I have finished the tool::core and tool::shed packages,

and their associated test suites. There is a lot left to do. And any help would be appreciated!

Teacup Integration
Through a combination for working with ActiveState and Roy Keene’s “Teaparty”, provide a

bilateral exchange of data between Teacup and SHED. At present, “Teaparty” lacks a database
backend, and SHED lacks a “search and install a package” capability. (Project codename:
tool::store.)

Sherpa Integration
The ODIE project has an automated build tool called Sherpa. This tool is already OO based,

and provides a lot of ready-made recipes for building common Tcl extensions on command.
Recipes are manually built, and distributed by checking scripts into a fossil repository. SHED
could provide a better mechanism for both generating recipes and delivering them. (Project
codename: tool::kit.)

NetTOOL
NetTool is envisioned as a framework for network protocol development. The goal is to

provide an assortment of ready-to-use design patterns for mail exchange, web services, and UDP
discovery. Much of this work will involve porting existing Tcllib code to the TOOL framework.
(Project codename: tool::socket.)

WebTOOL
WebTool is a framework for building dynamic web content, mainly through SCGI. Work has

begun on this with the upcoming SCGI package for Tcllib. The SCGI package is already TclOO
based, and ready to be made into a TOOL. The key will be to backstop it with a suite of ready to
use functions. (Project codename: tool::shiny.)

COOL
The ODIE project has another bit of technology that could enhance/be enhanced by tool. The

C and Tcl Hashtable Language for High Level Understanding (CTHULHU). This project uses
Tcl to build C code as well as to operate the underlying build system. The intent is to adapt
CTHULHU’s notation to utilize SHED, and also re-engineer Cthulhu to utilize the C API of
TclOO. (Project codename: CTHOOLHU)

Feedback
Ideas, comments, code submissions, and large denominations of charitable contributions can

be sent to me, Sean Woods: yoda@etoyoc.com

Credits
Cover Image: “Neolithic Implements, Figure 79”, The Outline of History, H.G.Wells
URL: http://www.ibiblio.org/pub/docs/books/sherwood/Wells-Outline/Images/0079img.htm

Projects Mentioned:
Fossil http://www.fossil-scm.org
Odie: http://fossil.etoyoc.com/fossil/odie
Sherpa http://fossil.etoyoc.com/fossil/sherpa
Sqlite http://www.sqlite.org
Tcl Core http://core.tcl.tk/tcl
Tcllib: http://core.tcl.tk/tcllib
Teaparty: http://teaparty.rkeene.org/fossil

