
ROSEA
A Relation Oriented Software Execution Architecture

Andrew Mangogna
amangogna@modelrealization.com

22nd Annual Tcl/Tk Conference
October 19-23, 2015

Copyright
© 2015, by G. Andrew Mangogna.
Permission to copy and distribute this article by any means is granted by the copyright
holder provided the work is distributed in its entirety and this notice appears on all
copies.

Abstract
ROSEA is also a Tcl package that implements a data and execution domain that is suit-
able as the target platform for translating executable software models into programs us-
ing Tcl as the implementation language. Translation is accomplished by capturing the
characteristics of the software model using a domain specific language from which the
data structures used by the run time component are built. This paper presents the de-
sign and implementation of ROSEA showing how Executable UML model semantics are
mapped to Tcl language constructs. Model classes are held in relation variables and
class relationships are enforced as referential integrity constraints between the relation
variables. Dynamics are implemented as Moore type finite state machines. Processing
is event driven and transactional in nature with the state of the program data being
rolled back if integrity checks fail.

Introduction

ROSEA is an acronym for Relation Oriented Software Execution Architecture. ROSEA
is a Tcl package written entirely in Tcl script but is heavily dependent upon TclRAL, a
"C" based Tcl extension that implements the relational algebra.

The purpose of ROSEA is to provide an implementation target for translating executable
models of software into running programs using Tcl as the implementation language. In
this paper we present two distinct views of the ROSEA package. First, ROSEA is dis-
cussed from a modeling / translating point of view. From this perspective, ROSEA pro-
vides a means for model execution semantics to be mapped onto Tcl language con-
structs. Secondly, ROSEA is discussed from a Tcl language point of view. From that
perspective, ROSEA is an object system based on namespace ensembles with object
data stored as relation variables.

The Modeling View of ROSEA

The diagram below shows a general outline of a software development workflow that is
accomplished by translation.

http://repos.modelrealization.com/cgi-bin/fossil/tclral

Requirements
Analysis Executable

Model
Translate Domain

Configuration

Domain
Population

ROSEA
Package

Tcl
Program

Generate

Requirements are analyzed to create Executable Models. A software system is divided
into Domains. A domain encapsulates a cohesive subject matter. A domain is then
translated into the ROSEA configuration DSL (Domain Specific Language). The
domain configuration is used to generate data that drives the run time execution of the
domain. Each domain is supplied with an initial domain population of class instances.
By combining the translated domain with its initial population and the ROSEA package,
a running Tcl program is obtained.

Space considerations do now allow us to discuss in this paper how requirements are
gathered and then analyzed to yield executable models. ROSEA is concerned with only
those items in the grayed out boxes in the above diagram, i.e. ROSEA is concerned only
with translating model logic into a Tcl implementation.

We insist that the models must be executable if we are to translate them and to that end
we insist that models conform to the semantics of Executable UML. Executable UML
uses a well defined subset of UML that has rigorous execution semantics. There are
several good books on Executable UML1 2 3 and readers are encourage to consult at
least one of them.

From the modeling perspective, ROSEA provides an implementation of the Executable
UML semantics using Tcl as the implementation language. The ROSEA package con-
sists of three principle components:

(1) A domain specific language that is used to encode the model graphic. The DSL
is consists of a set of Tcl commands and so the DSL would be classified as an
internal DSL. The DSL provides commands to define classes, attributes and
relationships and we shall see examples below.

1 Stephen J. Mellor and Marc J. Balcer, Executable UML: a foundation for model-driven architecture, Addison-Wesley (2002),
ISBN 0-201-74804-5.

2 Chris Raistrick, Paul Francis, John Wright, Colin Carter and Ian Wilkie, Model Driven Architecture with Executable UML,
Cambridge University Press (2004), ISBN 0-521-53771-1.

3 Leon Starr, How to Build Shlaer-Mellor Object Models, Yourdon Press (1996), ISBN 0-13-207663-2.

http://en.wikipedia.org/wiki/Executable_UML

(2) A set of run time procedures that activities in the model may invoke to access
data, navigate relationships and signal state machine events. The function of
the run time procedures is tailored to match the semantics implied by the exe-
cutable models.

(3) A generator that translates the configuration information provided by the DSL
into the data structures used by the run time. The run time is completely data
driven. The exact behavior, in modeling terms, that a domain exhibits depends
upon the data values supplied to the run time code For example, classes that
exhibit state behavior supply a state transition table to the run time code. The
behavior of the class depends upon the sequence of events received by a class
instance dispatched according to the specifications in the state transition table.

Examples of Translating Data

To get a sense of the ROSEA domain configuration DSL, we will show an example of
how to translate a model using ROSEA. The example we show here is fully worked out
in the literate program document that is part of the ROSEA distribution. In this paper,
we will translate only fragments of the model. Consider the following fragment of a class
diagram for a washing machine control domain. This domain controls a primitive auto-
matic clothes washing machine.

This class model fragment states, roughly, that there exists a Washing Machine class
that is identified by a Machine ID attribute and is characterized by a Cycle Type
attribute. There is also a Washing Cycle class that is identified by a Cycle Type
attribute and characterized by a number of attributes that hold water temperatures, dura-
tions and speeds. There also a relationship, R4, between Washing Machine instances
and Washing Cycle instances. The semantics of the relationship is stated by the verb
phrases on the class model graphic. A Washing Machine operates according to
exactly one Washing Cycle and each Washing Cycle prescribes the operation of
zero or more Washing Machines

As we begin to translate this fragment, recall that models are organized into domains
and the DSL has a domain command. The domain command supplies a name for the
domain and a script which defines the characteristics of the domain.

domain wmctrl {
Domain definition for the Washing Machine Control Domain
.....

}

The script for the domain command is an ordinary Tcl script, but is evaluated in a con-
text where specific commands may be invoked to configure the domain. In the remain-
ing portion of the example, we will assume that the commands shown are invoked inside
the script portion of a domain command.

We start with the Washing Cycle class, defined as follows:

class WashingCycle {
attribute CycleType string -id 1
attribute WashWaterTemp string
attribute RinseWaterTemp string
attribute WashDuration int
attribute RinseDuration int
attribute SpinDuration int
attribute AgitationSpeed string
attribute SpinSpeed string

}

The class command gives a name to the class and takes a script that defines the
properties of the class. Class attributes are defined by invoking the attribute com-
mand, which takes a name for the attribute and a Tcl data type. It may seem unusual to
specify a data type for a language like Tcl, in which everything is a string is such a
firmly held principle. This is an integrity check on the values that may be assigned to an
attribute. For example, the WashDuration attribute is declared as an int. This shows
the intent to store numbers in the attribute and potentially to perform arithmetic opera-
tions on the attribute values. Consequently, the WashDuration attribute is not allowed
to be set to a value that cannot reasonable be converted into an integer (by the usual
Tcl rules). This prevents attributes being set to values that have no possibility of being
correct. More detailed control of subsets of integer values is also available. Of course,
string is the universal Tcl type and any attribute whose type is declared as string
can be set to anything.

All classes must have one or more identifiers. An identifier consists of one or more
attributes whose values must be unique. For the case of Washing Cycle, there is one
identifier and that identifier consists on only one attribute, as indicated by the -id 1

option on the CycleType attribute4. This option corresponds to the {I} notation on the
model graphic.

4 If there were multiple attributes in the first identifier, then the -id 1 option would be given for each attribute in the identifier.

The two classes in the model also participate in an association named, R4. Associa-
tions define the way that class instances are related to each other. The model graphic
indicates the multiplicity and conditionality of the relationship using standard UML anno-
tations and indicates the semantics of the relationship using verb phrases. The asso-
ciation command captures the name of the association, the participating classes and
the multiplicity and conditionality.

association R4 WashingMachine 0..*--1 WashingCycle

There is a direct correspondence between the association command arguments and
the graphical notion for the association.

Associations are realized by having attributes of one class refer to identifying attributes
of another class. By "refer to," we mean that the value of the referring attribute is equal
to the value of the referenced identifying attribute. Readers familiar with relational data-
base management systems will recognize this concept as similar to a foreign key con-
straint found in SQL. The Cycle Type attribute in the Washing Machine class is anno-
tated with, {R4}, to indicate its role in realizing the R4 relationship. This shows up in the
definition of the WashingMachine class shown below.

class WashingMachine {
attribute MachineID string -id 1
attribute CycleType string
reference R4 WashingCycle -link CycleType

Other aspects of the Washing Machine class
...

}

The reference command states that the WashingMachine class realizes the associa-
tion, R4, to the WashingCycle class by linking the value of the CycleType attribute in
WashingMachine to be the same value as the CycleType attribute for some instance in
the WashingCycle class. The ROSEA run time code insures that this invariant is not
violated and any attempt to do so results in the state of the program being rolled back to
a valid set of values.

Examples of Translating State Models

Executable models sequence and coordinate processing by using state models. Below
is a state model diagram for the Washing Machine class.

This diagram represents graphically how the washing machine washes clothes by pro-
gressing through a series of states filling the clothes tub with water, washing, draining,
rinsing and spinning the tub to obtain clean clothes. The transitions from one state to
another are driven by the events as shown on the labels of the arrows directed from one
state to another. We must be careful to distinguish state model events from Tcl events.
State model events are implemented using Tcl events but, in this context, we are refer-
ring to the model level concept of an event to a state model.

This is a Moore type state model, i.e. each state is associated with an activity that is
executed upon entry into the state. The initial state, Stopped, is shown with the grayed
out background. The ROSEA configuration DSL supports directly declaring a state
model. This is done with the statemodel command that is part of a class definition.
Below the WashingMachine class is shown with its state model definition.

http://en.wikipedia.org/wiki/Moore_machine

class WashingMachine {
attribute MachineID string -id 1
attribute CycleType string
reference R4 WashingCycle -link CycleType

statemodel {
initialstate Stopped

state Stopped {} {
Stop spinning -- wash complete.

}
transition Stopped - Start -> FillingToWash
state FillingToWash {} {

Fill the tub with wash water.
}
transition FillingToWash - Full -> Washing
state Washing {} {

Agitate the tub to wash.
}
transition Washing - Done -> DrainingWash
state DrainingWash {} {

Stop washing and drain
the dirty wash water.

}
transition DrainingWash - Empty -> FillingToRinse
state FillingToRinse {} {

Fill the tub with rinse water.
}
transition FillingToRinse - Full -> Rinsing
state Rinsing {} {

Agitate the tub to rinse.
}
transition Rinsing - Done -> DrainingRinse
state DrainingRinse {} {

Stop rinsing and drain
the rinse water.

}
transition DrainingRinse - Empty -> Spinning
state Spinning {} {

Spin out excess water.
}
transition Spinning - Done -> Stopped

}
}

The state command specifies the name of the state, any arguments to the state and
the Tcl script to be executed when the state is entered. The interface to the state
command is the same as the proc command5. We do not show any of the processing
above, only the structural aspects of the state model. We will show the processing for
one state below.

The transition command defines which new state is entered when the state
machine is in some starting state and an event is received. Transitions and states may
be defined in any order. The order we have presented above emphasizes the state with
its outgoing transitions and the simple circular nature of this particular state model.

Examples of Translating State Activities

Each state has an activity associated with it that is a Tcl script which is run when the
state is entered. ROSEA provides a number of commands that state activities may
invoke to accomplish required model level actions. Since the state activity is also a Tcl
script, it has access to all the functionality provided by the Tcl language itself. We will
not detail all the model level actions a state activity may perform, but two common ones
are to navigate a relationship and to signal an event. The graphic below shows a por-
tion of the state model for the Washing Machine class, complete with the action specifi-
cation of what happens when the state is entered. The Washing state of the Washing
Machine class is entered by receiving the Full event and remains in that state until the
Done event is received. The processing is expressed in an action language that
describes what the state activity must accomplish.

5 State activities are translated into Tcl proc’s.

https://xtuml.org/learn/action-language-tutorial/

This action language description of the processing is translated into Tcl as follows:

state Washing {} {
Agitate the tub to wash.

select one ct related by self->R1[CT]
set ct [findRelated $self ˜R1]
signal Agitate to ct
signal $ct Agitate
select one wc related by self->R4[WC]
set wc [findRelated $self R4]
signal Done to self at wc.WashDuration
delaysignal [readAttribute $wc WashDuration] $self Done

}

Each state activity has an implicitly defined variable named self. This variable holds a
reference to the particular class instance for which the state activity is executing. The
findRelated command traverses a relationship and finds all the class instances that
are related. The signal command signals an event to a set of class instances. The
delaysignal command signals an event at a given time in the future. The readAt-
tribute command obtains the values of one or more attributes given a reference to a
class instance. For the Washing state activity, we have translated the action language
into Tcl code in its most straight forward way. The code could be refined further to
remove some, strictly speaking, unnecessary variable assignments by using common

Tcl command nesting.

For the Washing state, the related Clothes Tub instance6 is signaled with the Agitate
event to start the tub agitating the clothes. The agitation will continue for the length of
time specified in the related Washing Cycle instance as given by the Wash Duration
attribute. From the fragment of the model graphic we saw above, we know that travers-
ing relationship, R4, will yield exactly one related instance of Washing Cycle because
of the multiplicity and conditionality of the R4 relationship on the Washing Cycle side
(i.e. that side is marked as 1). The Done event is signaled to ourselves when the
amount of time held in the Wash Duration attribute has elapsed. When the Done event
is received, the instance transitions to another state and performs the processing
required to stop washing and continue the other steps of obtaining clean clothes.

Run Time Processing

Interacting state machines play an important role in sequencing and coordinating the
processing of a domain. Events are signaled to class instances and their state machine
receives the events, transitioning to a new state and executing the activity associated
with that new state7. ROSEA uses the Tcl event loop to implement state machine
events and state activities are executed as an after command callback.

Typically, execution unfolds when an event is delivered to a domain from an outside
source and a cascade of state activities are run as a result of the state transition trig-
gered by the event. State machines signal other state machines which causes the
thread of control to continue as the signaled events are received by class instances.
Eventually, the result of the original event is fully realized, state machines stop signaling
further events and the domain waits to receive the next external stimulus. ROSEA exe-
cutes the thread of control as a transaction on the underlying data model. At the end of
the transaction, all the integrity constraints represented in the class model as relation-
ships are checked. If the data model is not consistent, an error is thrown and the data is
rolled back to its previous set of values. In this way, the domain sequences from one
consistent data state to another as a result of executing threads of control started by
events arriving from the environment of the domain. The transaction associated with a
thread of control is transparent to the executing domain. ROSEA manages the transac-
tion boundaries and insures the domain sequences in time from one consistent set of
data values to another.

The Tcl View of ROSEA

The purpose of the ROSEA package is to provide a convenient means to implement
executable model semantics in the Tcl language. We have seen how an executable
model of a domain may be expressed in the domain specific language provided by
ROSEA. In this section, we discuss some of the details of how model semantics are

6 The Clothes Tub class and the R1 association do not appear on the class model fragment shown above but are part of the
complete example.

7 The new state may be the same as the current state and, if so, the state activity is executed again.

mapped onto Tcl language constructs. Regardless of the view of the program provided
by the ROSEA DSL, we are building Tcl programs and DSL perspective must be
mapped onto Tcl language constructs.

From the Tcl perspective, ROSEA is an extension that provides an object system. How-
ever, the object system provided by ROSEA is based on the relational model of data
rather than the more conventional concepts of type hierarchy and run time polymorphic
function dispatch. Since version 8.6, Tcl has had core support for object orientation.
The core has basic object commands intended to provide the foundation upon which full
featured object systems may be built, e.g. IncrTcl. In previous releases, Tcl supported
the concept of namespace ensembles. A namespace ensemble provides the means to
map subcommand names onto command prefixes. Using this, one may construct object
oriented commands in Tcl via namespace ensembles. ROSEA uses namespace
ensembles extensively. Each domain is realized as a namespace ensemble command
for its domain operations and has a namespace defined whose name matches that of
the domain. In the domain namespace, each class of the domain has an ensemble
command with subcommands being defined for all the class based operations.

For example, the wmctrl domain is realized as an ensemble command named ::wmc-
trl8 and a ::wmctrl namespace is created. In the ::wmctrl namespace, a ::wmc-
trl::WashingMachine ensemble command is created along with ensemble com-
mands for all the classes in the domain.

The namespace ensemble approach can provide commands that follow the typical Tcl
object oriented approach, but we still must deal with how to store instance data. One
approach for simple object systems using namespace ensembles is to store the
instance data in a dictionary held in a namespace variable. In this strategy, the dictio-
nary key is some identifier of the instance and the dictionary value holds the instance
data. That instance data can then be yet another dictionary with instance attribute
names as the keys of the nested dictionary.

In ROSEA, TclRAL is used as the data storage mechanism. TclRAL is a “C” based
extension that provides native Tcl data types for relation and tuple values. In addition,
TclRAL provides a relation variable concept along with relation variable referential con-
straints. ROSEA maps each model class to a TclRAL relvar and class instances are
represented as tuples of the relation value stored in the relvar. Each model level associ-
ation or generalization relationship is mapped to a TclRAL relvar constraint.

Fundamentally, the executable models are based on relational data model concepts and
TclRAL was designed specifically to match the semantics of executable models. Much
of the underlying ability of ROSEA to navigate relationships and insure data integrity
derives directly from the use of TclRAL to store class data. This includes the transac-
tional nature of the thread of control discussed above.

8 By default domains are placed in the global namespace, but may be placed in any desired namespace. We’ll use the global
namespace here for simplicity.

The diagram below shows how the Tcl components of a domain are organized.

::<domain name> <class relvars>

<class state relvars>

<class ensemble
commands>

<relationship ensemble
commands>

<run time
data relvars>

::<class 1>

::<class ...>

::__Activity

::<class op procs>

::<inst op procs>

state activity
procs

It should be noted and readers may have recognized that there is no concept of inheri-
tance in the object system presented by ROSEA. There is no substantial notion of
inheritance in the relational model of data and the emphasis here is on the deep ties
that the relational view has to predicate logic and set theory. Executable class models
do have the notion of a generalization relationship, but this actually represents a disjoint
union9 of the class instances rather than an inheritance of data type structure. For
some, the fact that the object orientation provided by ROSEA is not based on type hier-
archy will be disconcerting. However, object systems based on concepts other than

9 The disjoint union being complementary to the Cartesian product which is the conceptual basis for associations.

type hierarchy can be useful in some contexts, e.g. the snit object system is based
heavily on delegation concepts.

Conclusions

ROSEA provides a means to translate executable software models into a Tcl program.
It accomplishes this by using a domain specific language to define the configuration of a
translated model. The DSL statements have a direct correspondence with the model
graphic. Model level concepts are mapped onto Tcl language constructs by the genera-
tor and run time components. The primary organization of the translation is as an object
system based on namespace ensembles for the commands and using TclRAL for data
storage. The use of TclRAL is significant as it provides all the relational algebraic oper-
ations for operating on instance data as well as the integrity constraints implied by the
class model relationships.

Resources

The ROSEA package is freely available and licensed under the same license as Tcl
itself. The source code is available in a fossil repository located at:

http://repos.modelrealization.com/cgi-bin/fossil/mrtools

This repository is mirrored to:
http://chiselapp.com/user/mangoa01/repository/mrtools

The ROSEA package was written in the literate programming style. The literate program
document contains all of the design, code, test cases and the example fragment used
here is fully worked out. There is also reference manual documentation available.

http://repos.modelrealization.com/cgi-bin/fossil/mrtools
http://chiselapp.com/user/mangoa01/repository/mrtools
http://www.literateprogramming.com
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/trunk/rosea/doc/rosea.pdf
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/trunk/rosea/doc/rosea.pdf
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/trunk/rosea/doc/rosea.html

