
Regression testing GUIs
New features for tktest

Clif Flynt
Noumena Corporation,

8888 Black Pine Ln,
Whitmore Lake, MI 48189,

http://www.noucorp.com
clif at noucorp dot com

September 27, 2015

Abstract

Repeatable, interactive testing is essential to develop even a simple ap-
plication. During development, a few tests that exercise the functionality
being developed while the developer monitors the results are sufficient.

Complex applications and applications in the maintenance/extension
phase of their existence require too many tests to be manually monitored.
All portions of the application must be exercised to avoid the dreaded ”re-
moved one bug, added two new ones” phenomenon.

The tktest application has been expanded to support automated regres-
sion testing. These expansions include facilities for creating a log file for
each test, tools to examine the log files, improved facilities for recreating
tests, and new test modes to reduce false negatives.

1 Introduction

1.1 History

In 1995, Charles Crowley described the TkReplay application at the 4th Tcl/Tk
Workshop. This application allows the user to record and replay events to a Tk
application using the Tk send command.

TkReplay is a useful tool for exercising an application during development,
but by the early 2000s the GUI was outdated, and there was a need for more
functionality.

In 2004, Clif Flynt described expanding and updating the TkReplay pro-
gram into the tktest application at the Tcl/Tk conference.

The tktest application supported all the features of the original TkReplay
project and added:

• modern BWidget style GUI.

• support Windows and MacOS.

• communication via sockets instead of send.

• support for platform-native widgets.

• introspection into the target application.

The 2004 version of the tktest application proved useful for exercising
code. The new support for examining the application-under-test’s internal
structure made it particularly useful during the phase in which a developer
is busy adding new features. The ability to introspect into window hierarchies,
data structures and attached databases provides tools for confirming that new
code is not breaking old code.

Between 2004 and 2015 the tktest application has been used with several
applications. It has been used in the development phase of for many projects,
and is in post-development use to demonstrate filling out fields in a help sys-
tem and to generate customized distribution kits by querying a database and
running the Admin GUI to add users and clients.

The application has been extended to work with ttk:: widgets as well
as traditional widgets including introspecting into notebooks and paned win-
dows. There is improved support for overriding platform-native widgets.

1.2 Current Status

The tktest application has proven useful during the development phase of
a project. Being able to run a complex set of interactions with a single button
click not only saves time but frees the developer to concentrate on solving a
problem instead of remembering how to reproduce the problem.

As a project moves from development to deployment to maintenance, the
testing needs change. Tktest works well for the focused interactive tests in the
development phase of a project. When a project moves to the maintenance
stage of its life, it needs fuller automated test coverage.

In order to make tktest useful for regression testing a number of new
features were added to tktest and new helper applications were created.

This paper describes how to use tktest in interactive mode to develop
tests, how to collect those tests into a regression suite, how to run such a suite
and examine the results and finally the decisions and design that went into
creating the new tktest regression framework.

2 TkTest design

The backbones of TkReplay and the tktest application are Tcl’s ability to re-
name functions, perform introspection on a running program and the object-
oriented nature of the Tk widgets.

When tktest starts it opens a server side socket and waits.
When the target application starts, it opens a client side socket to the tktest

server. The server then sends commands to be evaluated in the client. These
Tcl commands rename many of Tk’s standard procedures and create new pro-
cedures to instrument the application being tested. The server then invokes
the procedure to step through each widget in the application and extend the
bindings for windows events like <Enter>, <Leave> the mouse buttons, etc.

The new widget bindings add a call to send event information to the tktest
server whenever an X11 event occurs in the client. When the server is in Record
mode, it saves these actions for later replay.

New widgets automatically receive the extra bindings courtesy of renamed
and overridden widget and proc procedures.

The server can send other Tcl commands to the client during recording and
replay. The introspection buttons send commands like array get $arrayName
and record the return from evaluating that command. These commands allow
the server to introspect into a running client to confirm that internal variables
have the expected values, etc.

The ability to send commands to the client can also be used to test the re-
turns from internal procedures or perform actions that can’t be easily auto-
mated via the GUI.

3 TkTest in Interactive Mode

Two common patterns during development are:

• use the tktest application to drive the application being developed to
a state where further manual testing can be done.

• : use tktest to create a script that generates an error condition that’s
being debugged.

Both patterns use this set of steps:

1. Instrument the application to be tested. In order to interact with an ap-
plication, the application must be instrumented. This can be done with
two lines of code:

source socksend.tcl
sockappsetup tktest.tcl 3010 127.0.0.1

An application that includes these two lines will pause at the sockappsetup
call until a tktest application accepts the socket connection.

2. Start tktest

When tktest starts it opens a server-side socket to communicate with
the application under test. The client initiates the connection and tktest
sends commands to fully instrument the client application.

After the connection is completed the tktest application will resemble
this:

Figure 1: tktest screen

3. Click leftmost arrow to put TkTest into Record mode.

The Record button is the red action button in the Event Script tab.

4. Perform actions you want to be repeated in the test application

Every event in the test application will be sent to TkTest where it is
timestamped and saved.

5. Stop recording in the TkTest application

The action button with a black square stops recording. The TkTest ap-
plication can now rewind and replay a set of actions.

6. Restart the test application and rerun the script

The client application can be stopped and restarted without restarting the
TkTest application. This allows you to edit, restart, use TkTest to drive
the application to a known state and either manually do more testing, or
add tests to be run automatically by TkTest.

The event script can be rerun immediately by clicking the Rewind and
Play buttons, or saved for future use via the File/Save menu item.

3.1 TkTest Overview

The tktest GUI consists of three sections:

• the top menu bar.

• status display.

• tab notebook.

In practice, you spend the bulk of your time dealing with the controls in the
notebook panels. The menus and buttons on those panels support loading and
saving event scripts, recording and replaying the event scripts and inserting
introspection into a test script.

Figure 2: Event Script window

The buttons shown below control the record and playback features of tktest.

Figure 3: Record/Playback buttons

Record/Play Buttons

Start recording events. Events will be displayed in the script
window as they are recorded.

Play events. The event being replayed is highlighted in the script
window.

Play events quickly. TkReplay records the time of events, and by
default will play back events with the same timing (or slightly
slower) than they were recorded. This button disregards the tim-
ing information and plays back as quickly as possible.

Rewind the event pointer to the top of the script window.
Stop recording and return to playback mode or stop playing the
current Event Script.

Pause the event playback.
While recording events in the test application introspection events can be

added with the test buttons shown below.

Figure 4: Introspection buttons

The Introspection and Test control buttons are:

Introspection Buttons

Records and checks the contents of an array in the target appli-
cation.

Records and checks the results of an SQLite database query in
the target application.

Records and checks the contents of window hierarchy in the tar-
get application. There are two forms of this button, one that
gathers all information about the window and one that rejects
the background color.

Records and checks the return value of a Tcl script evaluated in
the target application.

Add a ”Pause” to the script

Add a command to be evaluated in the TkReplay application.
This may be to wait for an event in the client to occur, allowing
the coordination when events take an indeterminate length of
time.

Add a comment to the script.

Erase the currently displayed script.

3.2 Complex Test Sequences

A single event script is useful when developing an application and targetting
a localized area of code.

The limitation to simple event scripts is that they can become long. The
longer an event script becomes, the more it becomes single-use and fragile.

For example, consider adding a ”Save Configuration” feature to a piece of
code. The event script will need to perform actions like:

• Open configuraton menu.

• Select desired settings.

• Close configuration menu.

• Open Save Configuration dialog.

• Enter save parameters.

• Click SAVE button.

This script works fine until you add a new configuration option and want
to confirm that it’s saving properly. You’d need to repeat a long set of actions

to build a new Event Script. That requires repeating a lot of actions to rebuild
the Event Script with a few new actions in the middle.

Event scripts can be combined with a Control Script. In the case above we
might make four event scripts:

• Open configuraton menu.

• Select desired settings.

• Close configuration menu.

• Save Configuration

When it’s time to add a new configuration option, we simply insert it in the
middle:

• Open configuraton menu.

• Select desired settings.

• SET NEW CONFIGURATION OPTION

• Close configuration menu.

• Save Configuration

Other tests might just use the configuration setup Event Scripts to put the
test application into a known state or use the ”Open configuration menu”
Event Script with a different set of parameters followed by the ”Close con-
figuration menu”.

Adding the ability to mix and match Event Scripts is another step toward
making tktest useful for regression tests.

4 Regression Testing

In theory, there is no difference between theory and practice.
In practice, however...

In theory, it would be simple to use the event scripts that were used during
development testing to do regression testing.

In practice, this doesn’t quite work.
Loading and running a single test while you’re developing an application

is a time saver. Loading and running a dozen tests and examining the output
is too slow and tedious ever to happen.

Running regression tests needs to be automated; there must be a summary
report generated; the results must be saved for later examination and there
must be tools to facilitate that examination.

The first obvious modifications to tktest were command line arguments
to let a test be automated.

Command Line Arguments
-appNames Define the application to exec
-script Define the event script to load
-playScript Define play speed for automated runs [normal fast fastonce]
-recordFile Define the file to record the results
-strict Should windows checks be strict or loose (default 1)
-exitChild Send exit cmd to child after run (default 0)

These command line arguments let a set of event scripts be automated with
a shell script like

wish tktest.tcl -appNames myTestApp.tcl -script test1.tkr \
-playScript fastonce -recordFile test1.txt -exitChild 1

wish tktest.tcl -appNames myTestApp.tcl -script test2.tkr \
-playScript fastonce -recordFile test2.txt -exitChild 1

The above commands will start tktest and then tktest will exec the
application being tested, load and run the event script, save the results and
finally send an ”exit” command to the test application before exiting itself.

Again, this seems pretty straightforward and simple until it reaches the real
world.

A run-test script is adequate for a few tests, but:

• keeping the shell script file up to date as new tests are added is tedious.

• grummaging through the individual report files is even more tedious.

• some tests require pre-test setup or post-test cleanup.

These requirements drove the need for a more powerful control script and
a file hierarchy for the tests and support files.

The tktest application is evolving as it meets more reality.
The current design is a top level folder for all the tests related to a project.

Within that folder are individual folders for each test.
The current file structure resembles this:

- Master Folder

- generic support files

- TestName Folder

- preTest.tcl: pre-test file setup and define params()
- postTest.tcl: test cleanup
- TestName.scr: Test script for this test.
- scriptName1.tkr: Individual event scripts to be run.
- scriptName2.tkr: Individual event scripts to be run.

The runRegressionTests.tcl script accepts the master folder as a com-
mand line argument and then steps into each of the child folders. It sources the
preTest.tcl script to perform any pre-test setup and to define the param as-
sociative array that defines values used by the test.

The preTest.tcl file looks like this:

file copy -force ../shortSample.txt /tmp/sample.txt
array set params {

appNames {{./test2.tcl}}
tktest ../../../tktest/tktest.tcl
wish /usr/local/bin/wish

}

The runRegressionsTest.tcl script eventually starts tktest.tclwith
this command line:

set rtn [exec $testParams(wish) $testParams(tktest) \
-script $root.scr \
-recordFile ${root}Results.txt \
-playScript $testParams(playScript) \
-exitChild $testParams(exitChild) \
-appNames $testParams(appNames)]

The default values for playScript and exitChild cause tktest to run
once quickly, send the exit command to the child and then exit itself.

These values can be changed on the command line to runRegressionTests.tcl
to cause tktest and the application being tested to remain active during de-
bugging.

When the regressions are complete, there is a results file in each of the child
folders and a summary file in the master folder. The summary file is named
with a time/date stamp to make it easy to track results. The individual results
files are overwritten after each run.

5 Analysis of Results

Running tests is all just fun and games until one fails.
A failure may be because:

• a test is miswritten and is checking for values that are not constant, for
example, a label containing the current date

• because the functionality was changed.

• because the GUI has been broken.

• because the GUI has been upgraded in a manner that breaks the test.

The tktest application generates a report file describing the differences
but that file may be several hundred thousands of bytes with only one charac-
ter of difference.

The obvious solution to this was to use tkdiff to highlight the difference,
but that only works for simple problems. When the difference is a single char-
acter in a complex window hierarchy, you need a context sensitive diff, not a
generic diff.

Tracking down the discrepancies needed a new application. The new ap-
plication is cleverly named resultsViewer.tcl. It provides two views of
the results file.

5.1 Example of use

Here’s a simple wish application that puts up two labels, one of which will
display a value from the command line.

source socksend/socksend.tcl
sockappsetup tktest.tcl 3010 127.0.0.1

pack [label .title -text "Simple Application"]
pack [label .l -text $argv]

This test application can be run with tktest using the command shown
below. This command will run the singleDiff.tcl file and providing ”fail”
as the command line arg. It will play the Event Script with no time delays once.
After running the script both the tktest application and the client will exit.

wish tktest.tcl -appNames "{./singleDiff.tcl fail}" \
-playScript fastonce \
-exitChild 1 \
-script singleDiffTest.tkr \
-recordFile singleDiff.txt

The resultsViewer.tcl application can be used to examine the singleDiff.txt
report file. The resultsViewer application will create three toplevel win-
dows. One to show the expected GUI with discrepancies highlighted, one to
show what was actually seen, again with discrepancies highlighted, and finally
a tkdiff style difference between the two text files.

Expected display Observed display

Figure 5: Textual differences

5.2 Making better tests

The Edit menu on the Event Scripts panel includes several items to facil-
itate updating existing tests or creating better tests. The first elements are ac-
tions that work on an entire script while the last section has actions that modify
a single event.

The main display in the tktest application is a listbox that supports se-
lecting a single line. Each event is reduced to a single line in this display,
even though it may be several hundred lines long. Once a line is selected,
the Delete and Edit options will process that line.

Figure 6: Event scripts Edit menu

5.2.1 Too many events

One of the first things you’ll notice when you run tktest is that there are a lot
of events generated. Many of these are superfluous movement events. There
is nothing wrong with these events, except that they clutter up the screen and
take time to evaluate.

The Compress motion events menu item removes all the intermediate
events and replaces them with a single movement from the starting location to
the end location. This frequently cuts an event script to a quarter of the original
size.

5.2.2 New values for an old test

If you’ve done a minor cleanup of a GUI, for example replacing one font with
another or remembering to capitalize all the titles, you won’t want to rebuild a

long test script from scratch. The Regenerate Current Script will rerun
the actions and generate a new script with the current values returned from the
introspection calls.

This action will save the new script under a name provided by the user.

5.2.3 Resetting the application target

An event script knows the name of the application being tested. In theory,
tktest could interact with multiple targets. (In practice, this has not been
implemented.)

If you change the name of the application under test, you will need to re-
target the script. This can be done with the Reset Current Script App
Target.

This action happens in-place within the tktest application, which allows
the user to load a script, connect from a test application, retarget and run the
Event Script.

5.2.4 Removing an event

People are only human. Sometimes you add an event that you really didn’t
want to use after all. The Delete selected event menu element will re-
move the selected event.

5.2.5 Modifying an event

The default behavior of tktest is to collect data from a gold run of your appli-
cation and confirm that it exactly matches the current run. This is is a simple
test, but not always best. In some cases values need to be discarded before
performing the tests, in other cases a vague match is better than precise, etc.

For example, you can check the contents of an array with a single command.
This is much faster than entering a command for each element in the array.
However, if one field in the array is a timestamp, it’s guaranteed that the test
will fail.

The tktest application uses string match to compare the expected re-
turns to the actual value returned. This allows the expected pattern to include
glob wildcards instead of exact text.

The Event Scripts are plain ascii text files. They can be modified with your
favorite text editor, or they can be edited within tktest.

Note that editing an event is fraught with danger. The event may generate
thousands of bytes of introspection data and the format is critical. Experienced
Tcl programmers should have little trouble with the format–it is simply Tcl, but
be careful about matching braces, spaces, etc.

Figure 7: Event scripts Edit menu

The image below shows the edit screen for the single CheckWinReturn
test of the two window Simple Application described above.

Figure 8: Event scripts Edit menu

5.3 Loose and strict tests

The default behavior for tktest is to compare all available data.
This may be superfluous. Some windows values may not affect the actual

display or may not matter to the behavior of the program.
While constructing a test the user can select the color or no-color option

for window introspection. In the no-color mode, background colors are disre-
garded.

At runtime, the user can select strict or loose window checking. In loose
mode, these elements are discarded from the expected and observed returns

before comparisons are done:

-sticky -column -columnspan -in -ipadx -ipady -padx -pady -row
-rowspan -browse -width -height -anchor -borderwidth -cursor
-compound -font -justify -orient -padx -pady -setgrid -takefocus
-textvariable -selectmode

By default tktest uses the strict mode.

6 Future work

There are two types of computer programs: ones that are not being used and ones that
need to be modified.

The tktest application is firmly in the second camp. Every time it gets
used with a new project I find new features to add or old features that need to
be modified.

Items on my ToDo list include:

• Many options including -strict and -usecolor are currently hard-
coded. These should be customizable from a configuration file and com-
mand line.

• Customizing an Event Script currently requires editing the .tkr script.
This should made easier.

• Analyzing the results is an area that always needs more work. The cur-
rent tool, resultsViewer.tcl, is better than previous tools, but it still
difficult to determine the exact reason a test has failed. In particular, find-
ing the correct widget in a nested set of frames, panels and notebook tabs
is difficult.

• After 20 years of hacking and last-minute fixes sections of the underlying
code are overdue for refactoring.

• A regression suite for tktest needs to be written.

• Change the sqlLite specific queries to use tdbc.

• The Expected value needs to support regular expression as well as glob
wildcards.

7 Summary

The TkReplay application from 1995 was renamed tktest in 2004 when it was
updated and expanded to support introspection and simple testing. This ap-
plication was again expanded in 2015 to support automated regression testing
for large, complex GUIs.

The tktest application suite is available on the Noumena Corporation
website (www.noucorp.com) under the Tcl tab.

