

The Universal Developer

Deploying Modern Solutions on the Mac

Kevin Walzer

Overview
● About myself

● Brief history of Tcl/Tk
on the Mac

● Carbon port
● Cocoa port

● Tk-Cocoa 2.0

● State of Tk/Mac at present
● Tk/Mac applications

● Best practices for
developing Tk on the Mac

● Optimizing a Tk app on OS
X: A case study

● Looking to the future

About me
● Kevin Walzer

● www.codebykevin.com
● Developing Tcl/Tk apps

on Mac since 2004
● Developing Tcl/Tk
extensions since 2006

● Took over as Tk-Mac
maintainer in 2011

http://www.codebykevin.com/

Brief history of Tcl/Tk
● Created by John Osterhout at UC-Berkeley in

late 1980s on Unix
● Osterhout left academe for Sun Microsystems

in mid-1990s; Tk ported to Mac and Windows
● Unix (X11) and Windows ports highly stable;
Mac has gone through several major transitions

 Mac port: Classic
● Tk ported to Mac by

Roy Johnson using
Toolbox API

● Mid-1990s

● Tk GUI on Classic Mac OS

Carbon port
● Called “Tk Aqua”

● Ported by Jim Ingham
and Ian Reid, sponsored

by Apple
● October 2001

● Relatively-quick
“Carbonizing” of Tk with
updated Toolbox API for

OS X

Carbon port
● Daniel Steffen takes over as lead

maintainer
● April 2007: Completes major

modernization of Carbon port,
removing deprecated “Classic”

API’s
● June 2007: Apple announces

deprecation of Carbon API’s in
favor of Cocoa API’s: Carbon will
be supported as 32-bit API only,

Cocoa will be supported as 64-bit
● Many developers unhappy

Cocoa port
● Apple hires Daniel Steffen to port Tk from

Carbon to Cocoa
● Begins work September 2008, announces

release April 2009
● Ensures Tk’s viability on OS X with 64-bit

support

Benefits of Cocoa port
● Can do things Carbon port

cannot
● Better UI integration
● Native icons/bitmaps

● Native window behavior
● Easier to integrate with

other Cocoa API’s
● 64-bit support/long term

viability

2010-2013: Cocoa issues
● More complex design than

Carbon
● High-level widgets and event

loop do not map neatly to Tk’s
low-level, draw-everything

model
● Tk often freezes at random

intervals, especially when
event loop overloaded

● Drawing sometimes displays
artifacts

2010-2013 Cocoa issues
● Use of private API’s

prevents deploying Tk-
Cocoa apps in Mac App
Store

● Author of port, Daniel
Steffen, hired by Apple
full time and can no
longer works on Tk

● Other developers lack
expertise to address
issues

Tk-Cocoa 2.0
● Decided to remove private API’s
● Removal revealed numerous flaws; Tk was

seriously broken
● Re-implementing several Tk widgets with

alternative API solved many of these issues
● Converted button, menubuttons and scrolling

to HITheme

Tk-Cocoa 2.0
● Cocoa design: NSWindow (toplevel) wraps NSView (window

content/client area)
● Tk uses single NSView for drawing child windows in a toplevel
● Buttons and scrolling were additional NSViews with their own

hierarchy of subviews
● Tk could not handle this complexity
● HITheme is a drawing-only API; ttk themed widgets already use it
● Much simpler to render widgets only and delegate widget behavior

to Tk
● HITheme is a relic of Carbon that was not removed because it is

useful for custom drawing

Tk-Cocoa 2.0
● Marc Culler, Python and Tkinter developer,

began contributing numerous patches to fix
and improve various aspects of Cocoa port:
image rendering, event processing, scrolling,
memory management

● Did not keep every one of his changes but
there was so much iteration that he earned a
co-author credit on Tk-Cocoa

Tk-Cocoa at present
● Finally stable: 8.6.5 will mark point release of

stable Tk/Mac
● Rapid, heavy development phase complete

Tcl/Tk apps on OS X -
Commercial

● Bitrock uses Tcl/Tk
for its Installbuilder
product and Bitnami
open-source
distributions

● www.bitrock.com

http://www.bitrock.com/

Tcl/Tk apps on OS X -
Commercial

● ActiveState uses
Tcl/Tk for the GUI on
its developer tools

● www.activestate.com

http://www.activestate.com/

Tcl/Tk apps on OS X -
Commercial

● Farmer’s Wife, a
facilities management
application

● www.farmerswife.com

http://www.farmerswife.com/

Tcl/Tk apps on OS X -
Commercial

● All of my own
applications at
www.codebykevin.com
 use Tk GUI’s

http://www.codebykevin.com/

Tcl/Tk apps on OS X – Open
Source

● Password Gorilla
● https://github.com/zdia/gorilla/
● Password manager

https://github.com/zdia/gorilla/

Tcl/Tk apps on OS X – Open
Source

● SnapPy, a
scientific/molecular
visualizer
http://www.math.uic.
edu/t3m/SnapPy/

Tcl/Tk apps on OS X – Open
Source

● IDLE, Python’s IDE
bundled with the
programming language

● Probably the most
widely-used Tk
application on OS X:
source of many bug
reports against Tk

Best practices for developing
Tcl/Tk apps on OS X

● Mac users place a premium on the user
experience and user interface

● Mac platform has interface guidelines that
most apps conform to

● While Tk is cross-platform, a little extra work
will make your app work much better in the
Mac environment and will make Mac users
more comfortable using it.

Best practices for developing
Tcl/Tk apps on OS X

● Use a Mac application structure - starpack
|-- StarkitApp.app
| `-- Contents
| |-- Info.plist <-----XML file with app configuration data
| |-- MacOS
| | `-- starpack <-----executable
| `-- Resources
| `-- StarkitApp.icns

Best practices for developing
Tcl/Tk apps on OS X

● Use a Mac application structure – standalone
build of Wish

|-- WishApp.app
| `-- Contents
| |-- Info.plist <-----XML file with app configuration data
| |-- Frameworks
| `--Tcl.framework
| `--Tk.framework
| |--libs
| `--auto_path libs
| |-- MacOS
| | `-- WishApp <-----executable
| `-- Resources
| `-- WishApp.icns

Best practices for developing
Tcl/Tk apps on OS X

● More information on app bundles and
deployment:
http://www.codebykevin.com/tutorial.html

http://www.codebykevin.com/tutorial.html

Best practices for developing
Tcl/Tk apps on OS X

● Keyboard accelerators: use Command instead
of Control

● Menu items:

if { [tk windowingsystem] == "aqua"} {

proc ::tk::mac::ShowPreferences {} {
prefs_dialog_command

}
proc ::tk::mac::Quit {} {

exit
}
proc tk::mac::ShowHelp {} {

user_help_cmd
}

}

Optimizing a Tk app on OS X: A case study

● Manpower, a man page
viewer

● Similar functionality to TkMan:
provides tools for searching,
browsing, and viewing man
pages, using the rman tool
wrapped by a Tk GUI

● No source code in common;
design similarities end with
use of rman

Optimizing a Tk app on OS X: A case study

● Manpower makes use of many Mac-specific
API’s: scriptable via AppleScript and Services
interfaces, supports native printing, supports
native fullscreen API via window manager

● Tk extension packages for these API’s at
http://fossil.codebykevin.com -- look for tk-
components repo

http://fossil.codebykevin.com/

Looking to the future
● Main priorities for Tk: Keep up to date with

Mac API churn
● Now that it is reasonably stable, I do not

anticipate making radical changes
● Tk will likely continue to require more

maintenance on Mac than Windows or X11

Change in programming
languages

● Apple has added a new language,
Swift, that they are positioning as the
development language of the future

● They likely will continue to support
Objective-C and C indefinitely as
millions and millions of lines of code
are written in these languages

● Objective-C will likely not undergo
further enhancement

Implications of Swift for Tcl/Tk
● The move to Swift does not present as many

issues for Tk as the switch from Carbon to
Cocoa, which was an existential threat

● Cocoa vs. Carbon was an API shift; Swift is still
Cocoa

● Swift seems more analogous to C-Sharp on
Windows

Questions and thanks
● I am happy to answer any questions.
● Thanks for your interest.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

