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About me
● Kevin Walzer

● www.codebykevin.com
● Developing Tcl/Tk apps 

on Mac since 2004
● Developing Tcl/Tk 
extensions since 2006

● Took over as Tk-Mac 
maintainer in 2011

http://www.codebykevin.com/


  

Brief history of Tcl/Tk
● Created by John Osterhout at UC-Berkeley in 

late 1980s on Unix
● Osterhout left academe for Sun Microsystems 

in mid-1990s; Tk ported to Mac and Windows
● Unix (X11) and Windows ports highly stable; 
Mac has gone through several major transitions



  

 Mac port: Classic 
● Tk ported to Mac by 

Roy Johnson using 
Toolbox API 

● Mid-1990s

● Tk GUI on Classic Mac OS



  

Carbon port 
● Called “Tk Aqua”

● Ported by Jim Ingham 
and Ian Reid, sponsored 

by Apple
● October 2001

● Relatively-quick 
“Carbonizing” of Tk with 
updated Toolbox API for 

OS X



  

Carbon port
● Daniel Steffen takes over as lead 

maintainer
● April 2007: Completes major 

modernization of Carbon port, 
removing deprecated “Classic” 

API’s
● June 2007: Apple announces 

deprecation of Carbon API’s in 
favor of Cocoa API’s: Carbon will 
be supported as 32-bit API only, 

Cocoa will be supported as 64-bit
● Many developers unhappy



  

Cocoa port
● Apple hires Daniel Steffen to port Tk from 

Carbon to Cocoa
● Begins work September 2008, announces 

release April 2009
● Ensures Tk’s viability on OS X with 64-bit 

support



  

Benefits of Cocoa port
● Can do things Carbon port 

cannot
● Better UI integration
● Native icons/bitmaps

● Native window behavior
● Easier to integrate with 

other Cocoa API’s
● 64-bit support/long term 

viability



  

2010-2013: Cocoa issues
● More complex design than 

Carbon
● High-level widgets and event 

loop do not map neatly to Tk’s 
low-level, draw-everything 

model
● Tk often freezes at random 

intervals, especially when 
event loop overloaded

● Drawing sometimes displays 
artifacts



  

2010-2013 Cocoa issues 
● Use of private API’s 

prevents deploying Tk-
Cocoa apps in Mac App 
Store 

● Author of port, Daniel 
Steffen, hired by Apple 
full time and can no 
longer works on Tk

● Other developers lack 
expertise to address 
issues



  

Tk-Cocoa 2.0
● Decided to remove private API’s
● Removal revealed numerous flaws; Tk was 

seriously broken
● Re-implementing several Tk widgets with 

alternative API solved many of these issues
● Converted button, menubuttons and scrolling 

to HITheme



  

Tk-Cocoa 2.0
● Cocoa design: NSWindow (toplevel) wraps NSView (window 

content/client area)
● Tk uses single NSView for drawing child windows in a toplevel
● Buttons and scrolling were additional NSViews with their own 

hierarchy of subviews
● Tk could not handle this complexity
● HITheme is a drawing-only API; ttk themed widgets already use it
● Much simpler to render widgets only and delegate widget behavior 

to Tk
● HITheme is a relic of Carbon that was not removed because it is 

useful for custom drawing



  

Tk-Cocoa 2.0
● Marc Culler, Python and Tkinter developer, 

began contributing numerous patches to fix 
and improve various aspects of Cocoa port: 
image rendering, event processing, scrolling, 
memory management

● Did not keep every one of his changes but 
there was so much iteration that he earned a 
co-author credit on Tk-Cocoa



  

Tk-Cocoa at present
● Finally stable: 8.6.5 will mark point release of 

stable Tk/Mac
● Rapid, heavy development phase complete



  

Tcl/Tk apps on OS X - 
Commercial

● Bitrock uses Tcl/Tk 
for its Installbuilder 
product and Bitnami 
open-source 
distributions

● www.bitrock.com

http://www.bitrock.com/


  

Tcl/Tk apps on OS X - 
Commercial

● ActiveState uses 
Tcl/Tk for the GUI on 
its developer tools

● www.activestate.com

http://www.activestate.com/


  

Tcl/Tk apps on OS X - 
Commercial

● Farmer’s Wife, a 
facilities management 
application

● www.farmerswife.com

http://www.farmerswife.com/


  

Tcl/Tk apps on OS X - 
Commercial

● All of my own 
applications at 
www.codebykevin.com
 use Tk GUI’s

http://www.codebykevin.com/


  

Tcl/Tk apps on OS X – Open 
Source

● Password Gorilla
● https://github.com/zdia/gorilla/
● Password manager

https://github.com/zdia/gorilla/


  

Tcl/Tk apps on OS X – Open 
Source

● SnapPy, a 
scientific/molecular 
visualizer 
http://www.math.uic.
edu/t3m/SnapPy/



  

Tcl/Tk apps on OS X – Open 
Source

● IDLE, Python’s IDE 
bundled with the 
programming language

● Probably the most 
widely-used Tk 
application on OS X: 
source of many bug 
reports against Tk



  

Best practices for developing 
Tcl/Tk apps on OS X

● Mac users place a premium on the user 
experience and user interface

● Mac platform has interface guidelines that 
most apps conform to

● While Tk is cross-platform, a little extra work 
will make your app work much better in the 
Mac environment and will make Mac users 
more comfortable using it.



  

Best practices for developing 
Tcl/Tk apps on OS X

● Use a Mac application structure - starpack
|-- StarkitApp.app
|   `-- Contents
|       |-- Info.plist          <-----XML file with app configuration data   
|       |-- MacOS
|       |   `-- starpack        <-----executable
|       `-- Resources
|           `-- StarkitApp.icns



  

Best practices for developing 
Tcl/Tk apps on OS X

● Use a Mac application structure – standalone 
build of Wish

|-- WishApp.app
|   `-- Contents
|       |-- Info.plist         <-----XML file with app configuration data  
|       |-- Frameworks
|           `--Tcl.framework
|           `--Tk.framework
|       |--libs
|          `--auto_path libs  
|       |-- MacOS
|       |   `-- WishApp       <-----executable
|       `-- Resources
|           `-- WishApp.icns



  

Best practices for developing 
Tcl/Tk apps on OS X

● More information on app bundles and 
deployment: 
http://www.codebykevin.com/tutorial.html

http://www.codebykevin.com/tutorial.html


  

Best practices for developing 
Tcl/Tk apps on OS X

● Keyboard accelerators: use Command instead 
of Control 

● Menu items: 

if { [tk windowingsystem] == "aqua"} {

proc ::tk::mac::ShowPreferences {} {
prefs_dialog_command

}
proc ::tk::mac::Quit {} {

exit
}
proc tk::mac::ShowHelp {} {

user_help_cmd
} 

}



  

Optimizing a Tk app on OS X: A case study

● Manpower, a man page 
viewer

● Similar functionality to TkMan: 
provides tools for searching, 
browsing, and viewing man 
pages, using the rman tool 
wrapped by a Tk GUI

● No source code in common; 
design similarities end with 
use of rman



  

Optimizing a Tk app on OS X: A case study

● Manpower makes use of many Mac-specific 
API’s: scriptable via AppleScript and Services 
interfaces, supports native printing, supports 
native fullscreen API via window manager

● Tk extension packages for these API’s at 
http://fossil.codebykevin.com -- look for tk-
components repo

http://fossil.codebykevin.com/


  

Looking to the future
● Main priorities for Tk: Keep up to date with 

Mac API churn
● Now that it is reasonably stable, I do not 

anticipate making radical changes
● Tk will likely continue to require more 

maintenance on Mac than Windows or X11



  

Change in programming 
languages

● Apple has added a new language, 
Swift, that they are positioning as the 
development language of the future

● They likely will continue to support 
Objective-C and C indefinitely as 
millions and millions of lines of code 
are written in these languages

● Objective-C will likely not undergo 
further enhancement



  

Implications of Swift for Tcl/Tk
● The move to Swift does not present as many 

issues for Tk as the switch from Carbon to 
Cocoa, which was an existential threat

● Cocoa vs. Carbon was an API shift; Swift is still 
Cocoa

● Swift seems more analogous to C-Sharp on 
Windows



  

Questions and thanks
● I am happy to answer any questions.
● Thanks for your interest.
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