
Mighty Morphin’ Widgets
A case-study in TclOO with Adaptive

Widgets

Clif Flynt
Noumena Corporation,

8888 Black Pine Ln,
Whitmore Lake, MI 48189,

http://www.noucorp.com
clif at noucorp dot com

September 27, 2015

Abstract

The Adaptive Object Model is a relatively new concept in Object Ori-
ented Design in which objects are configured during instantiation to match
the runtime environment.

The TclOO object system’s mixin facility provides the infrastructure
for implementing and extending Adaptive Objects to reconfigure an object
during use as the environment changes.

This paper describes the fileWatch widget as an example of a widget
that redefines its methods to adapt to changes in the file it is displaying.

The fileWatch widget adapts to runtime conditions including

• A file being created or deleted.

• A file growing too large to display in main memory.

• A file being replaced by a gzipped version.

1 Introduction

Primitive widgets have limited adaptability. You can modify the bindings,
background color, font, etc. for a button or a label, but it will still be a but-
ton or a label.

Web browsers use adaptive widgets to conform to the display environment:
mobile, desktop, etc., but the functionality of the widget remains the same in
all environments.

More complex widgets like the file selectors adapt to their environment in
minor ways, displaying different sets of data in the file-selector window, al-
lowing the user to specify paths, etc.

Even adaptable widgets like file selectors do not adapt when a folder is
replaced by a zip file, or a remote server goes offline. Such conditions are
commonly haneled by adding control code at the application layer.

The Adaptive Object Model as described at
http://adaptiveobjectmodel.com/ proposes objects that are customized
during instantiation based on a set of rules.

TclOO extends this concept to objects that reconfigure themselves during
use.

The fileWidget design arose from a need to display a file’s contents de-
spite the file being too large for main memory, newly created, modified or even
gzipped. Responding to any of these changes needed to be done without con-
trol code in the application. The widget is built with the TclOO package and
uses the mixin facility to reconfigure the widget during use.

The fileWatch widget is highly automated and adaptable. It can be at-
tached to a non-existent file and will display the file when it is created. If the
file grows too large for the usual scrolling text widget, it reconfigures itself
to page in data from the disk. If the file is gzipped, the fileWatch widget
automatically detects this and re-attaches itself.

The widget also contains optional search support and an optional basic file
info display.

2 Introduction to Dynamic Object Oriented Design,
TclOO Style

Traditional OO design paradigms are built around the concept that a class is a
static structure defined early in a project’s lifetime. It will encapsulate all the
required information and behavior that an object of that class will ever require.

Like hard-coded variables, this is a concept that works well for a many of
purposes, but doesn’t truly reflect reality.

Tcl is a dynamic language. As such, TclOO supports modifying a class def-
inition and object behavior in a dynamic manner–while an application is run-
ning. This feature of the language allows a Tcl script to adapt to a changing
environment by redefining objects to match the current needs.

As an analogy, traditional OO design supports modeling a table saw or a
drill press. TclOO supports modeling a Shopsmith (TM) that can be reconfig-
ured as a table saw, router, drill press, lathe, to perform any required task.

2.1 TclOO Basics

TclOO is the set of Object Oriented commands supported by an extension to
Tcl 8.5 and as part of the core in Tcl 8.6 and newer. It was developed by Donal

Fellows and borrows heavily from XOtcl (Gustav Neumann), incr Tcl (Michael
McClennan), SNIT (William Duquette) and others.

The TclOO commands are defined in the ::oo namespace to keep them
safe from collisions with user-defined procedures.

A class is defined with the oo::class create command.

Syntax: ::oo::class create name script

Define a class
name The name of the class being defined
script A Tcl script using TclOO commands which

defines the new class

Most often a class definition includes a constructor to be invoked when
an object is created, a destructor to be invoked when an object is destroyed
and one or more methods.

::oo::class create fileClass {
constructor {path} {

variable State
set State(channel) [open $path r]

}
method read {} {

variable State
return [read $State(channel)]

}
destructor {

variable State
close $State(channel)

}
}

2.2 Hierarchies of related classes

The power of Object Oriented design comes from being able to combine small
classes into larger classes with more functionality.

TclOO supports merging classes with two constructs, traditional inheri-
tance and mixins.

The difference between inheritance and mixins is that an inherited class is
commonly used for features that are expected to be permanent in the object
while mixins are preferred for runtime modifications.

In Fantasy Role-Playing game terms, you might create a base class of character,
and a derived class of dwarf that inherits all the methods from character
and adds capabilities specific to all dwarves. When a dwarf object picks up a
magic sword, the new capabilities are specific to this object and are not perma-
nent. Thus the new capabilities should be added with a mixin class.

TclOO supports redefining both a parent class or a mixin class at runtime. In
common use, the super class is not modified, though the mixin classes might
be changed.

2.3 Traditional Class Hierarchies

The traditional method of creating class hierarchies is inheritance.
TclOO implements inheritance by allowing a class to declare a super class

that it inherits methods and data structures from. Control can be passed from
the derived class to the parent with the next command. Methods within an
object are invoked with the my command.

::oo::class create fileTextClass {
Declare the parent class
super fileClass

constructor {path} {
variable State

Create and map a text widget
set State(textWidget) [text .t]
grid $State(textWidget)

Pass control to the parent class constructor
next $path

}

Display the file in the text widget
method display {} {

variable State
$State(textWidget) insert end [my read]

}
}

A mixin can be declared with the class definition similar to declaring a par-
ent class:

::oo::class create caesar1 {
method read {} {

Call the parent ’read’ method to retrieve the text.
set d [next]

Trivial caesar cipher.
foreach ch [split $d ""] {

scan $ch %c x

incr x
append rtn [format %c $x]

}
return $rtn

}
}

::oo::class create fileCaesar1TextClass {
super fileTextClass
mixin caesar1

}

2.4 Dynamic Class Hierarchies

Under the hood, TclOO is built around two commands, oo::define to define
components of a class and oo::objdefine to define components of an object.

Rather than declaring a mixin with the class definition, a mixin can be
added at runtime. From the previous examples, instead of defining the fileEncryptTextClass
class with the mixin command, the code could add the encryption support at
runtime:

fileTextClass create cipherShow /tmp/textmsg.txt
oo::objdefine cipherShow mixin caesar1
cipherShow display

The obvious advantage of this technique is that a new encryption policy
can be created by defining a new class with a new read method and mixing
that into a fileTextClass object when it’s needed.

To further extend dynamic support, the oo::objdefine command can be
invoked inside an object method allowing the object to redefine itself when
conditions change.

The object hierarchy is modified using the oo:objdefine command.

Syntax: oo::objdefine objectName script
oo::objdefine objectName ?subcommand ?arg1 arg2 ...?
Define a feature of an individual object.
className The name of the object to be modi-

fied.
script A script with commands to modify

the object. This may modify several
features.

subcommand A subcommand that defines a single
feature to be modified.

?arg1 arg2 ...? The arguments that a subcommand
requires.

In the next code snippet, the adaptiveTextClass object will mix in the
caesar1 class if the target file ends in a .crp. If the target file does not end in
.crp, it’s a text file and the base class read method is used.

::oo::class create adaptiveTextClass {
Declare the parent class
super fileClass

constructor {path} {
variable State

Create and map a text widget
set State(textWidget) [text .t]
grid $State(textWidget)

if {[string first ".crp" $path] > 0} {
oo::objdefine [self] mixin caesar1

}

Pass control to the parent class constructor
next $path

}

3 fileWatch widget

The fileWatch widget is composed of a master frame that contains a text
widget and associated scrollbars and optionally file information (path and size)
and forward/backward search frames.

Figure 1: fileWatch widget

The files displayed by the fileWatch widget may be changing during run-
time or too large to simply load and display or zipped.

The different conditions could be handled with a set individual procedures
to handle the each type of file.

For example, a small file can read into a text widget with a scrollbar at-
tached in the usual manner:

text .t -yscrollcommand ".ysb set"
scrollbar .ysb -orient vertical -command ".t yview"

The text widget becomes unwieldy when the file size exceeds a few megabytes.
In that case, instead of invoking .t yview the command associated with the
scrollbar will be some variant of .t pagedYview. The pagedYview proce-
dure will calculate an offset into the file based on the arguments sent by the
scrollbar, seek to the appropriate location in the target file and display a screen-
full of the contents.

If a file is zipped it can be read by pushing the gunzip translator onto the
channel with the code shown below (courtesy of Andreas Kupries’ and Jacob
Levy’s work to add filters to the Tcl channel).

zlib push gunzip $State(chan)
This allows a channel to read zipped data, but the seek command is not

supported for a zipped file.
The seek functionality can be implemented by closing and reopening a file

then reading to the seek location. This is not as fast as a true seek, but the slow
functionality is better than no functionality.

In the case of a zipped file, a private seek procedure needs to be added into
the package.

Such a collection of procedures would implement all the required features
for a single widget.

An application may require several fileWatch widgets in simultaneous
use. Tracking private data for each widget using one or more global arrays can
be done, but is not elegant. A namespace can be used to hold the private data,
but the need to reconfigure the widget during operation makes that pattern
cumbersome as well.

TclOO’s support for dynamic object design is the clean method for creating
this functionality.

3.1 Evolution of a design

The fileWatch widget grew from a need to display a file’s contents.
The initial code was a trivial procedure to create a text widget with a scroll-

bar to display the data from a file. If the file was too large for a text widget, the
first few kilobytes of the file were displayed followed by a message that ”the
file is too large.”

The need to display very large files (multiple Gigabytes) drove the need to
connect the scrollbar to a paging procedure that can load small sections of the
file into the text widget.

method read {} {
if {[file size $State(path)] > $State(maxSize)} {

assign scrollbar command option to paging method
} else {

read all data and attach scrollbar to text widget
}

A text widget that contains all the text in a file has no state connected with it
beyond that held in the scrollbar and text widget. A scrollbar that’s associated
with a paging procedure has a great deal of state - the current seek location in
the file, the open channel descriptor, etc.

A single widget can maintain the state in a global variable. However, multi-
ple widgets need individual state variables. While this can be done with global
arrays that borrow the pattern used by the http:: commands, the problem is
better solved with an object.

This led to collecting the code that handled opening, displaying, etc into a
simple class with no hierarchy to centralize the associated methods and data.

The next requirement was that the users want to scroll to the bottom of a
changing file and continue to see the last N lines–the behavior of tail -f.

This led to tweaks to the scrollbar methods.
When large files are finally closed, the parent application gzipped them to

save space. This required that the widget know when a file was renamed so
that it could be reopened with gunzip pushed onto the channel.

At this point, the self-contained class became unwieldy. The internal read
and yview methods were getting too many layers of conditionals to cover small
files, large files, small zipped files, large zipped files, files that were still chang-
ing, etc.

Moving the special case handling to separate modules is the obvious solu-
tion to the problem of excessive indents.

A traditional OO design using inheritance would solve the problem of han-
dling different types of files, but does not address the issue of files that change
from small to large or uncompressed to compressed at runtime.

TclOO’s mixin functionality solves this problem.

3.2 Design

The fileWatchwidget is composed of four classes, the primary class, fileWatch
and the mixins for small, large and large zipped files.

A checkFile method is invoked at intervals to examine the attached file
and determine if:

• the file has changed size

• a file that did not exist has appeared

• a file that did exist has disappeared

• the file has been gzipped

When one of these conditions exists, a new mixin may be merged into the
object to adapt to the new conditions, replacing methods from previous mixins.

The hierarchy and methods are shown in the diagram below.

fileWatch_SmallFile {

 mixin optional runtime references fileWatch

 method setScrollStyle

 method showPage

 method reload

 method search

 }

fileWatch {

 method configure

 method buildGUI

 method checkFile

 method openFile

 method mySeek

 method insertData

 method resizeTextWin

 method calcMaxSize

 method setDispSize

 method setMixin

 method setYsb

 method getTextSearchFlag

 method clearMatches

 method markMatches

 }

fileWatch_LargeZippedFile {

 mixin optional runtime references fileWatch

 method mySeek

 }

fileWatch_LargeFile {

 mixin optional runtime references fileWatch

 method showLines

 method yView

 method setScrollStyle

 method reload

 method refillBuffer

 method indexLines

 method getStartLinePos

 method showPage

 method search

 }

Figure 2: FileWatch Class Hierarchy

The critical methods are checkFile and setMixin. The actual code is
fairly straightforward, but these two procedures implement the adaptive na-
ture of the widget.

The checkFile method

• checks to confirm that a file exists

– if the file does not exist, it’s marked as such

– if the file does not exist, but a gzipped version does exist, the .gz file
is opened.

– if the file does exist, it’s opened

• checks the file size and calls setMixin if the size has changed.

The code for this method is a bit longer.

##
method checkFile { {reset {} } }--
check for changes in a file’s characteristics
Arguments
NONE
#
Results
setMixin may be invoked to modify object
New file channel may be created

method checkFile {} } {
variable State

If the file doesn’t exist clean up if it used to exist.
If it exists as a .gz file, attach to that.

if {![file exists $State(path)]} {
Did it used to exist?
if {$State(size) > 0} {

if {[file exists $State(path).gz]} {
set State(path) $State(path).gz
set State(displaypath) $State(path)
set State(size) [file size $State(path)]
Can get here if file doesn’t exist but file.gz does
In that case, chan == -1
catch {close $State(chan)}
my openFile
my setMixin

}
}

}

If it didn’t exist, but does now, connect to the file

if {($State(chan) == -1) && [file exists $State(path)]} {
File has appeared!
my openFile
my setMixin
my setDispSize
my reload

}

catch {file size $State(path)} newSize

If file size has changed save the new file size
possibly change mixins,
update the display if necessary.
Evaluate registered callbacks

if {$newSize != $State(size)} {
set State(size) $newSize
my setMixin
my setDispSize
my reload

if {$State(callback) ne ""} {
if {[catch $State(callback) rtn]} {

if {[file exist $State(path)]} {
tk_messageBox -type ok \
-message "FAILED: $State(callback)\n $rtn"

}
}

}
}

I’ll be back.
Use catch in case the widget was destroyed
before the after event fires

set State(afterID) \
[after $State(interval) [list catch "[self] checkFile"]]

}

The checkFile method is triggered by an after event. Only public meth-
ods can be invoked from outside the class, so what is properly a private method
is named with a lower case letter. The ooutil package contains wrappers to
allow the method to be a private method, but in the interest of making the file-

Watch widget completely self-contained, I chose to use let checkFile be a public
method.

The checkFile method examines the file but does not modify the object
hierarchy. If the checkFile method finds any changes in the file, it invokes
the setMixin method to determine if the object hierarchy needs to be modi-
fied.

Again the logic is a set of simple tests - is the file small enough to simply
load into the text widget or does it require paging?

The lines that modify the object resemble this:
oo::objdefine [self] mixin fileWatch LargeFile

##
method setMixin {}--
Load a mixin for this file
Arguments
NONE
#
Results
Object hierarchy may be modified
#

method setMixin {} {
variable State

if {$State(size) <= 0} {
if {[catch {file size $State(path)} State(size)]} {

return
}

}

set currMixin [string trim [info object mixins [self]] :]
set newMixin 0

Use paging if file is larger than 2M
if {[string is double $State(size)] && $State(size) > 2000000} {

Large zipped files get special processing
if {$State(zipped)} {

if {$currMixin ne "fileWatch_LargeZippedFile"} {
oo::objdefine [self] {

mixin fileWatch_LargeZippedFile
mixin -append fileWatch_LargeFile
set newMixin 1

}
}

} else {
File is plaintext, but large
if {$currMixin ne "fileWatch_LargeFile"} {

oo::objdefine [self] mixin fileWatch_LargeFile
set newMixin 1

}
if {$newMixin} {

If we’ve changed mixin style, update display
lassign [$State(ysb) get] start end
if {$end < .99} {

set charCount [string length [$State(textWin) get 0.0 end]]
set pos [expr $charCount * $start]
set offset [expr {$pos/$State(size)}]

} else {
set offset 1.0

}
my yView moveto $offset

}
}

} else {
File is small, load it and display
if {$currMixin ne "fileWatch_SmallFile"} {

oo::objdefine [self] mixin fileWatch_SmallFile
}

}
my setScrollStyle

}

The hierarchy does not include the object variable State that is unique to
each object. Not surprisingly, the State variable holds information about the
object’s State. The table below shows the currently supported indices, orga-
nized by use. Not all files will have all the indices populated. For example, a
small file does not use any of the large file paging parameters.

I used an array variable instead of independent variables because of the
number of values required to define the state of the widget and the file. Using
individual variables would have become awkward and difficult to maintain.

State Array
File information
State(path) Actual file path
State(displaypath) File path to display
State(dir) Parent folder of file being viewed
State(chan) File channel
State(type) Type of item being watch - currently ”file” or ”NoExist”
State(row) Row for widget if it grids itself in parent
State(col) Column for widget if it grids itself in parent
State(zipped) Set if file is zipped.
State(callback) Optional Callback to invoke when file size changes
State(size) Current size of file

Large file support
State(seek) Offset into file
State(dataStart) Offset of internal buffer into file for large files
State(displayStart) Offset into internal buffer for display
State(lineIndex) Index of line start offsets into buffer for large files
State(maxSize) Calculated max number of chars in text widget.
State(lineCount) Number of lines in text widget

Search support
State(regexp) Use regular expression rules for search
State(matchCase) Case match for search
State(searchStart) Start location for next search
State(searchVal) Value to search for

Window values
State(parent) Window parent of widget
State(enableInfo) Enable or disable the path/size display
State(enableSearch) Enable or disable file search
State(DispSize) Pretty formated file size
State(formatCmd) Format command for pretty printing file sizes
State(infoArgs) Optional key/value pairs to customize filename/size
State(textWin) Window path to text widget
State(textArgs) Arguments for text widget

-wrap word -height 10 -xscrollcommand .delta1.xsb set
State(xsb) X scrollbar window path
State(ysb) Y scrollbar window path

File check interval
State(afterID) Internally used for checking if file changes
State(interval) File check interval - defaults to 1000

One of the goals for the fileWatch widget is to be a generic replacement
for several custom widgets. As such it required the ability to be customized.

The following arguments are supported by the fileWatch constructor:
Creation time options
-path Path to file
-displaypath File name to display if enableInfo enabled
-textArgs Args for text widget
-infoArgs Args for information widgets
-addWin Win-cmd
-parent Parent frame
-interval Refresh interval
-row Top row for elements of the fileWatch wid-

get
-col Left column for elements of the fileWatch

widget
-callback Script to invoke when filesize changes
-enableSearch 1/0, 1 to enable the search elements
-enableInfo 1/0, 1 to enable the information elements
-formatCmd Formatting for size or other information
The -textArgs and -infoArgs keys allow the application to customize

the appearance and behavior of the text, information and search widgets. The
argument is a list of key/value pairs.

The -addWin argument accepts a Tcl script to be evaluated. Combined
with the -row and -col keys it lets the application add new windows or but-
tons to the fileWatch widget.

A pure default fileWatch widget can be created with a script like this:

fileWatch new -parent .default -path "/tmp/tstfile.txt"
grid .default

which creates a widget resembling this

Figure 3: Uncustomized fileWatch

You can customize the fileWatch widget by modifying the appearance of
the text widget and info labels, adding a top label and a new button to archive
the displayed file with this script:

fileWatch new -parent .customized -path "/tmp/tstfile.txt" \

-addWin {{button [my configure -infoFrame].b \
-text Archive -command archive} \
-textArgs {-font {arial 12 bold} \
-wrap word -height 10} \
-infoArgs {-font {courier 14} \
-relief solid -borderwidth 2} \
-maxSize 2 -enableInfo 1 -row 2 -enableSearch 1]]

grid .customized -row 3 -column 1 -sticky news
label .customized.lbl -text "Customized fileWatch" \

-font {arial 16 bold}
grid .customized.lbl -row 0 -column 0 -columnspan 2

which will generate a widget that resembles this:

Figure 4: Customized fileWatch

4 Conclusion

The fileWatchwidget demonstrates the power of the TclOO mixin construct
to create widgets that respond to changes in their environment and reconfigure
themselves to match.

The Adaptive Object Model is a new design pattern that has great potential
for handling real-world situations ranging from financial applications to biol-
ogy. Any design element that can change states may be best modeled using
this technique.

As demonstrated with the fileWatchwidget, the TclOO mixin command
is well suited to developing systems using this model.

