
The TclQuadcode Compiler
Donal K. Fellows and Kevin B. Kenny

Abstract
This paper presents work in progress on compilation of Tcl to native code via a
novel intermediate language, quadcode, and LLVM IR. It discusses some of the
details of how we analyse Tcl in order to make useful type assertions, the strategy
for issuing IR and native code, and presents some of the early performance
results, which are believed to be of great interest.

Overall Picture
The Lehenbauer ​Challenge was set at the Tcl Conference in Chicago in 2012 ​. It
actually consists of two challenges: a challenge to double the speed of Tcl, and a
challenge to multiply Tcl’s speed by 10.

Doubling Tcl’s speed is not trivial, as it requires greatly improving the speed of
key areas such as I/O (e.g., by reducing the number of times a buffer gets copied).
Moreover, we have a bytecode engine that is clearly in a local optimum: most
small changes to it make it slower, and Tcl 8.6.4’s bytecode now covers almost all
operations that it makes sense to have in an inner loop. Possible improvements
would be to optimize the generated bytecode at a higher level than the current
peephole system, so allowing detection of cases where a reference does not need
to be shared and a copy can be avoided. While this would not improve the best
Tcl code, it is likely to have quite a strong effect on code out there “in the wild”.

The ten-times speedup is not in this category at all. Going by past history of
participation in wider cross-language performance measurement challenges, we
know that ×10 acceleration takes us into the same performance category as C
and C++, especially for numerical code. Those languages get their speed from
generating native code and applying careful optimization to the code they
produce, and this is an area where a significant amount of effort has been
devoted over decades. Making Tcl work in this performance domain is deeply
non-trivial; the current bytecode engine simply is not up to the task.

But that isn’t to say that it cannot be done. The real performance boost of the
Tcl_Objvalue system (one of the two key performance accelerators of the Tcl 8
series of releases) depends on the fact that values tend to be used as if they are of
a particular type, i.e., the value “​1​” tends to be used as an integer, or at least as a
number. This means that if we could examine the code and determine what this
implicit type is, we might be able to generate efficient native machine code from
Tcl. This would be ideal, as it would allow us to avoid requiring people to put
extensive type annotations on their code in order to take advantage of the
performance gains: while experience suggests that many would do it, it would
significantly reduce the rate of adoption, and much code would never make the
changes at all.

There is another fly in the ointment when it comes to generating native code.
There are many platforms out there, each with it’s own nuances. If we wish to
generate native code, it would help tremendously to go to an intermediate
format accepted by some other system so that we can leverage both their
optimization code and their native code issuer. There are a number of such
platforms out there ​[GESA+, GouGou, HHCM, KWMR+, MOSK+]​, but one of the more
highly regarded ones is LLVM ​[LatAdv]​, the Low Level Virtual Machine, as that is
used as the back end of one of the better C and C++ compilers, and can already
generate executable code in memory so that we do not need to rely on
temporary files for code issuing and linking.

The code associated with this paper is currently hosted in fossil on chiselapp in
the ​tclquadcode​ repository . 1

Type Analysis of Tcl using Quadcode
The first step in the process of compiling Tcl is to convert it into conventional
bytecode. This allows us to avoid having to understand all the nuances of Tcl’s
many commands, and leverages our existing bytecode compilation system. We
see below a typical Tcl procedure (plus a couple of lines at the start that we use
to introduce an ad hoc type assertion), and a fragment of the bytecode that it
produces.

Figure 1:​ The conversion of a Tcl procedure to Tcl bytecode

1 ​http://chiselapp.com/user/kbk/repository/tclquadcode/

http://chiselapp.com/user/kbk/repository/tclquadcode/

We then translate the bytecode into a new abstract bytecode language that we
call quadcode. Quadcode is named for the fact that it was originally written with
exactly four list items per instruction, though that restriction has subsequently
been relaxed. However, it is still highly stylized; the first word is always the
opcode name, the second word is always the target (a variable or a location to
jump to, when defined at all) and the third and subsequent words are arguments
(variables or literals).

This simple quadcode is obtained by direct translation of Tcl’s bytecode; every
bytecode instruction becomes one or more quadcode instructions, ordinary
variables translate in the most obvious fashion, and stack locations become
temporary variables. We see below the initial translation of the bytecode to
quadcode.

Figure 2:​ The conversion of Tcl bytecode to quadcode

The quadcode generated in this process is quite verbose, and working with it is
expensive in both space and time. (Moreover, reading it to debug the compiler is
taxing.) To speed up the rest of the compiler (and more important, to preserve
the developers’ sanity), several ‘clean up’ optimizations are performed at this
phase.

Copy propagation. ​If any operand is always the result of a copy (such as
the occurrence of ​{varj}at quadcode index 12 above), it is replaced
with the source of the copy (e.g., ​{temp0}​). This process may make the
copy into an unused variable.

Dead code elimination. ​If any result (such as ​{temp0}at quadcode
index 11 above) is unused, the corresponding quadcode instruction may
be eliminated. When this happens, all jumps need to be adjusted. This
process may, in turn, mean that further code is unused or introduce
further opportunities for copy propagation. These two steps are carried
on in alternation until they detect no further opportunities to improve the
code.

Jump tidying. Jumps to unconditional jumps, are replaced with jumps to
the targets, and jumps to the immediately following instruction are
removed. Following this adjustment, jumps are rewritten so that a
conditional jump never jumps to a place in the code where multiple paths
of the control flow join (by introducing an additional unconditional jump).
This last adjustment simplifies inserting quadcode where needed, since it
ensures that there is always a place to do so that will not interfere with
other flows of control.

These optimizations produce considerably simpler quadcode. Shown below is
the translation of the original procedure to the cleaned-up code.

Figure 3:​ Comparing original Tcl code with cleaned quadcode

Conversion to SSA

Reasoning about types and determining the lifetimes of variables requires that at
each point a variable is used, it is possible to determine all the assignments to the
value that could reach that point. Modern compilers, including ours, generally do
that by rewriting the program into a form called Static Single Assignment (SSA)
[CFRW+]​. In this form, any variable in the program is assigned to only once, so it is
possible immediately to see where the assignment took place. If a value is
assigned in multiple places, each assignment gets its own name. When two or
more assignments to a value reach a use of the value, a pseudo-function called φ
is introduced at the place where the flows of control converge, and its result
becomes the new value that flows into the use. In other words, an operation like

v​3​ := ​φ​(v​1​, s​1​; v​2​, s​2​)

means “v​3 gets the value of v​1 if control got here from s​1​, or the value of v​2 if
control got here from s​2​.” This notation frequently enables simple one-pass
algorithms to do the work that would otherwise have required complicated
iterative data-flow analysis.

Converting the quadcode into SSA form, we get:

0: param {var x 0} {arg 0}
1: param {var n 1} {arg 1}
2: invoke {var x 2} {literal tcl::mathfunc::double} {var x 0}
3: invoke {var n 3} {literal tcl::mathfunc::int} {var n 1}
4: copy {var j 4} {literal 0}
5: copy {var s 5} {literal 1.0}
6: copy {var t 6} {literal 1.0}
7: copy {var i 7} {literal 0}
8: jump {pc 18}
9: uminus {temp 0 9} {var t 21}
10: mult {temp 0 10} {temp 0 9} {var x 2}
11: mult {temp 0 11} {temp 0 10} {var x 2}
12: add {var j 12} {var j 19} {literal 1}
13: div {temp 0 13} {temp 0 11} {var j 12}
14: add {var j 14} {var j 12} {literal 1}
15: div {temp 0 15} {temp 0 13} {var j 14}
16: copy {var t 16} {temp 0 15}
17: add {var s 17} {var s 20} {temp 0 15}
18: confluence
19: phi {var j 19} {var j 4} {pc 8} {var j 14} {pc 17}
20: phi {var s 20} {var s 5} {pc 8} {var s 17} {pc 17}
21: phi {var t 21} {var t 6} {pc 8} {var t 16} {pc 17}
22: phi {var i 22} {var i 7} {pc 8} {var i 23} {pc 17}
23: add {var i 23} {var i 22} {literal 1}
24: lt {temp 0 24} {var i 23} {var n 3}
25: jumpTrue {pc 9} {temp 0 24}
26: return {} {var s 20}

In effect, what has happened is that the block of code from lines 18–22 has been
added, describing what happens inside the loop: the four loop variables ​i​, ​j​, ​s​,
and ​tmay originate either in the block of code before the loop or from
assignments within the loop.

Lifetime Analysis

The machine code translation gains part of its speed from doing explicit memory
management, freeing objects when they are no longer required, rather than
performing reference counting the way that the Tcl interpreter does. From the
SSA form, it is reasonably simple ​[BHDG+] to determine the points at which a value
is required at a given quadcode instruction but not at the following one, and free
the value explicitly. Reference counting is not required, since there is only, ever,
a single reference to a value. The translator inserts ‘​free​’ quadcodes when this
occurs.

The loop body (instructions 9–17 above) is a fairly good example of this
translation. When expanded for memory management, that block of instructions
looks like the following:

11: free {} {temp 0 37}
12: uminus {temp 0 12} {var t 33}
13: free {} {var t 33}

14: mult {temp 0 14} {temp 0 12} {var x 2}
15: free {} {temp 0 12}
16: mult {temp 0 16} {temp 0 14} {var x 2}
17: free {} {temp 0 14}
18: add {var j 18} {var j 31} {literal 1}
19: free {} {var j 31}
20: div {temp 0 20} {temp 0 16} {var j 18}
21: free {} {temp 0 16}
22: add {var j 22} {var j 18} {literal 1}
23: free {} {var j 18}
24: div {temp 0 24} {temp 0 20} {var j 22}
25: free {} {temp 0 20}
26: copy {var t 26} {temp 0 24}
27: add {var s 27} {var s 32} {temp 0 24}
28: free {} {temp 0 24}
29: free {} {var s 32}

This stanza begins with freeing the temporary that informed the ‘​jumpTrue​’
instruction that entered the loop. Virtually every time a value is used, it is the last
use of the value, and a ‘​free​’ follows immediately. Note how the SSA form means
that loop variables at the bottom of the loop are named differently from the ones
at the top: ‘​j:=j+1​’ results in creating a new instance of ​jand freeing the
old one.

Type Reasoning

Finally, the translator must label all values with their types. This labeling is done
by walking the dependency graph of the quadcode instructions. Types of literals
are assumed optimistically (if a literal looks like an integer, a double, and so on, it
is one). Types of operations are determined by the types of their arguments; for
example, an add of an integer and a double is guaranteed to produce a double.

Figure 4:​ The inherent type logic of Tcl’s built-in bytecode operations.

Circular dependencies always flow through φ operations and represent the
natural loops in the program. Loops are solved from the inside out (this happens
by identifying strongly connected components of the dependency graph), and are
also handled optimistically, by having the rule at a φ operation be, “if the two
operands are of a given type, assume that the result is of the simplest common
type (integer → numeric, integer → string, etc.).” The implications of the
assumption are traced. If the result is inconsistent, then the assumption is
repeated with the simplest type that makes it consistent, until the process
converges.

If the result of a φ operation is different from any of its operands, explicit
‘​convertToType​’ instructions are inserted into the quadcode to inform the
machine code translator that an operand must be widened at that point.

The result of all this is that a procedure is reduced to a block of quadcode, with
φ operations describing the data flow, and with all values annotated with their
types: the type table from the ‘​cos​’ procedure is shown below. LLVM code
translation can then begin.

Data types inferred:
var x 0: DOUBLE
var x 2: DOUBLE
var n 1: INT
var n 4: INT
var j 6: INT BOOLEAN
var j 10: INT
var i 9: INT BOOLEAN
var i 12: INT
var t 8: DOUBLE
var j 35: INT
var j 22: INT
var j 26: INT
var t 37: DOUBLE
temp 0 16: DOUBLE
 ...
temp 0 41: INT BOOLEAN
Return type inferred: DOUBLE

Compilation of Quadcode to Machine Code using LLVM
Once we have typed quadcode, it is possible to generate efficient machine code
from it. The strategy we use for doing this is translation into LLVM Intermediate
Representation (IR), as this allows us to use the optimizers and code generators
developed by groups with far more expertise in this area. We also had the good
fortune of being able to use an existing Tcl package, ​llvmtcl by Jos Decoster , to 2

get started.

IR defines programs to be split up into modules, which are containers of
functions and global variables (much as code units in C and C++ work). Each
function is in turn split up into basic blocks, one of which is designated the entry
block, the first block executed when the function is called. Each basic block starts
with a sequence of φ-nodes (an empty sequence in the case of the entry block)
and ends with a jump of some kind (always to the start of a basic block) or a

2 ​https://github.com/jdc8/llvmtcl

https://github.com/jdc8/llvmtcl

return. Other kinds of instructions — loads, stores, arithmetic, function calls, etc.
— comes in-between. LLVM does not have an explicit stack or registers; instead,
instructions yield an immutable value (where appropriate) and that value is used
as an operand in other instructions. The actual allocation of variables and stack
space as required is done during target platform code generation. Assignable
variables are done using the abstract address of a memory location that can hold
the type, and an explicit load from that memory location when the value is
desired, so making explicit any distinctions between the variable and its value at
a particular time.

As can be seen, there are many similarities between IR and quadcode,
particularly in how functions are regarded as being a collection of basic blocks,
and how results of operations are immutable values. There are some substantial
differences as well. The actual operations are very different, as might be
expected (quadcode is still a kind of abstract Tcl bytecode, IR is more of an
abstract assembly language), and quadcode arranges basic blocks into a
predefined sequence, whereas IR does not. IR also has a substantially different
type system, being based on integers of arbitrary fixed widths, structures,
vectors and pointers; it is very obviously a system designed to support
implementing C. In addition, the way that types are expressed within the
instructions is quite different, as quadcode has them implicitly attached to values
(with some exceptions) whereas IR explicitly attaches them to instructions.
Because of these differences, the translation of quadcode to IR is non-trivial and
definitely​ a one-way transformation.

The strategy we use to perform the translation is to turn each quadcode
instruction into a short sequence of IR instructions. In the simplest and most
common cases, the code issued instantiates the arguments to the instruction
(reading from variables or generating constants as necessary) and generates a
call to an internal library of functions that implements the semantics of the
operation, before finally storing the result back into another variable. Some
instructions are special in this regard, notably returns and jumps (which do not
produce results and terminate their basic block) and φ-nodes (which ​cannot
take arguments as they must come first in a basic block).

What happens in practice can be seen with the conversion of the loop body
example from the previous section. It turns out that the floating point operations
can usually be issued directly inline, but the integer operations cannot; they are
variable width operations that need to do a considerable amount of processing in
the case where the width changes.

%tmp.0 = fsub double -0.000000e+00, %phi_t
%tmp.03 = fmul double %tmp.0, %x1
%tmp.04 = fmul double %tmp.03, %x1
%j = call %INT @tcl.add(%INT %phi_j, %INT { i32 1, i32 undef, i64 1 })
%2 = call i64 @tcl.int.64(%INT %j)
%cast = sitofp i64 %2 to double
%tmp.05 = fdiv double %tmp.04, %cast
%j6 = call %INT @tcl.add(%INT %j, %INT { i32 1, i32 undef, i64 1 })
%3 = call i64 @tcl.int.64(%INT %j6)
%cast7 = sitofp i64 %3 to double
%tmp.08 = fdiv double %tmp.05, %cast7

%s = fadd double %phi_s, %tmp.08

Some quadcode instructions may generate failures, i.e., Tcl exceptions of various
kinds (usually errors). These are distinguished by having an α-FAIL type, which
is modeled using a variation on the Haskell Maybe monad. Where an instruction
produces such a value, we also pass in an extra hidden argument that is the
location where the Tcl result code should be written. The resulting α-FAIL is
still checked for whether a failure occurred (​TCL_OKis not used as signaling
value) but it does capture what type of exception was encountered.

The other major wrinkle is that a substantial proportion of quadcode
instructions are variadic, e.g., for list creation or dictionary entry reading,
whereas IR instructions are almost all not. (There are some exceptions to this
rule, but they are either for special operations or do not usually generate
particularly efficient code, in the case of variadic function calls.) Because of this,
for variadic instructions we pack the variadic part into an array and pass that
array (plus its length) to the implementation function. This is practical because
we completely understand just what the nature of the variable number of
arguments is.

The functions in the internal library are all marked as being suitable for
mandatory inlining; this means that the LLVM optimizer will insert them into the
generated IR. It allows us to inject splits into the IR’s basic blocks without
changing the level that the compiler reasons about them (critical for correct
processing of φ-nodes) and also to exclude execution paths that we can prove
cannot happen. This greatly improves the quality of the generated code, allowing
the optimization out of many basic operations such as ​Tcl_Objreference count
management (helped by the fact that we also correctly annotate the description
of the Tcl API in LLVM with information about whether functions modify their
arguments, what is an allocation, etc.)

The optimization step allows us to convert the ​cosloop body into this, which is
close to as efficient as theoretically possible:

%6 = fmul double %phi_t64, %x
%7 = fmul double %6, %x
%tmp.04 = fsub double -0.000000e+00, %7
%8 = extractvalue %INT %phi_j62, 0
%9 = icmp eq i32 %8, 0
%10 = extractvalue %INT %phi_j62, 1
%11 = sext i32 %10 to i64
%12 = extractvalue %INT %phi_j62, 2
%x.6425.i43 = select i1 %9, i64 %11, i64 %12
%z.643.i44 = add i64 %x.6425.i43, 1
%cast = sitofp i64 %z.643.i44 to double
%tmp.05 = fdiv double %tmp.04, %cast
%z.643.i = add i64 %x.6425.i43, 2
%13 = insertvalue %INT { i32 1, i32 undef, i64 undef }, i64 %z.643.i, 2
%cast7 = sitofp i64 %z.643.i to double
%tmp.08 = fdiv double %tmp.05, %cast7
%s = fadd double %phi_s63, %tmp.08

However, the really large issue is that quadcode instructions need to understand
the implicit type system of Tcl, and that does not map simply onto the types of
LLVM IR simply.

Types and Their Mappings

Each type in quadcode is mapped to a specific type in LLVM IR. The simplest
example is the DOUBLE type, which is mapped to an IEEE double. The INT type is
rather more complex, as it needs to be able to be expanded from one type to
another. Because of this, it is mapped to a triple of a discriminator flag and a pair
of fields for holding the value, one a 32-bit integer and the other a 64-bit integer
(the expansion to bignums is obvious, but not currently done due to some Tcl API
limitations). The other major general type, STRING, which also encompasses
both lists and dictionaries at present, is mapped to a ​Tcl_Objreference that is
guaranteed to be non-NULL.

Many operations support various options for implementation. For example, the
addquadcode can be applied to either a pair of INTs, a pair of DOUBLEs, or a mix
of an INT and a DOUBLE (with the INT being promoted to a DOUBLE prior to the
addition). Similarly, the strlen quadcode is designed to take a STRING but needs
to accept any other type. The code for all of these possible implementations
would be rather long and likely to be error-prone; for that reason, we have a
mechanism for automatically applying the type-lifting operation when issuing
instructions.

The lifting code leverages the fact that we are using a TclOO class to manage the
instruction issuing. We encode the types of the arguments in the name of the
method (e.g., an add of an integer and a float becomes ​add(INT,DOUBLE)under
the scheme) and detect where we do not have an implementation through
TclOO’s unknown method handler mechanism. Where such a method is found to
be absent, we generate it automatically by applying type-widening fragments to
the arguments before calling an existing method (e.g., ​add(DOUBLE,DOUBLE)​) to
perform the core of the operation, generating a new method on the fly that
supports the operation that we really want. The mechanism for this uses a list of
possible type-widenings and tries to find the minimal widening (i.e., minimum
extra code added) that will generate a type-correct method. This allows us to
handle the generation of a whole family of methods for doing, say, string-length
on all supported values while not having to write very much code.

The final major type to mention is the FAIL type (the key to how we handle
exceptions), which is an addition to the other types in that it wraps them up: it’s
always an INT FAIL or a DOUBLE FAIL or a STRING FAIL or one of the other basic
types with FAIL applied to it. The FAIL usually manifests itself as a wrapping
structure, with one field being a bit saying whether the value is present in the
other field, or whether it is a failure (with the error code stored in an auxiliary
variable and any error message in the Tcl interpreter’s result, as normal). There
are two exceptions to this: VOID FAIL and STRING FAIL. With STRING FAIL, the
type is actually mapped to a ​Tcl_Obj*as with a STRING, except that the pointer

may be NULL. With VOID FAIL (only used as the result type of a procedure that
has no non-error exit paths) the FAIL is just a single bit.

One significant wrinkle is where a quadcode instruction is variadic, since we
avoid using variadic implementation functions. In this case, we pack the variadic
parts as a sequence of ​Tcl_Objreferences into an array and pass that array
(plus its length) into the implementation function; the type widening is handled
in a special non-branching code generation sequence that is implemented in a
separate method of the instruction issuer, ​buildPath(the name reflects its
original use in generating the dictionary instructions), that does the same type
widening that would be used elsewhere and which produces a path structure.
The methods of the instruction issuer that consume the path structure delegate
the reading of the values to a separate simple method, ​ExtractPath​, that picks
the values out of the path and stores them in Tcl variables in the caller; those are
then used in the call to the implementation function, which can have a single
simple type.

Exception Handling

As you have seen, the FAIL type modifier on an instruction result indicates that
that instruction may (and sometimes may always) produce an error. The initial
code issuing then adds a separate check for whether the error occurred, jumping
to the relevant exception target if that occurs. Every procedure that can have an
exception reach the top level includes a global exception-handling basic block,
which is used as a target when no other target is described in the exception
contexts of the original bytecode.

However, there are also two key hidden variables that have an impact on this
scheme: the interpreter and the result code (used typically for values other than
TCL_OK​). The interpreter is used to provide a route to report error messages,
and is actually a global variable to the whole LLVM IR module. This is a
reasonable thing to do because we never compile code that is shared between
interpreters: it is always intended as a replacement for specific procedures in a
specific interpreter. Because the value is a module-global, the interpreter is just
used as required by the implementation functions, and is never explicitly
referred to in the arguments.

The result code is specific to the current function, but is never mentioned
explicitly in the quadcode as something other than a value that magically is
produced by the ​returnCodeinstruction. In practice, the result code is stored in
a piece of memory allocated at the start of the function, and a pointer to that
memory is passed to the implementation functions as a “hidden” argument (i.e.,
not explicitly mentioned in the type-tuple in the method name) for each
quadcode instruction that can produce an error so that they can set the value;
the ​returnCodeinstruction just reads the current value of the variable. The
implementation functions are all inlined and the LLVM optimizer prioritizes the
promotion of variables in memory to local values, this actually gives efficient
code for the management of the shadow result code.

It should be noted that take substantial care to avoid handling the ​TCL_BREAK
and ​TCL_CONTINUEexceptions via the exception code system. Tcl already tries to
avoid generating them in Tcl 8.6’s bytecode compiler, using general jump
instructions where we can, and we optimize this further by detecting cases that
have slipped through that initial net and producing the jump sequence anyway
during quadcode generation. This means that the actual instruction sequence
issued for handling exceptions is relatively slow; as is normal with Tcl, we do not
attempt to make the error case optimal.

Low-Level Code Organization

The Tcl code of the IR issuer can be divided into a few pieces. At the top level is
the main driver, which presents an interface to the user and coordinates with the
quadcode generator before calling the IR code issuer. The next level down is the
code issuer, which is in four parts:

1. Generation of the library of implementation functions.
2. Generation of the declarations of the functions that will come from the

bytecode (done as a separate stage to allow inter-procedural calls).
3. Generation of the definitions of those functions, each via issuing an entry

sequence, a translation of all the quadcode instructions, and a final closing
of all the unfinalized basic blocks.

4. Generation of the “thunks” which adapt the functions listed above to be
Tcl commands. For example, where a function takes a DOUBLE and
produces an INT, there will be an initial check of the number of
arguments, then ​Tcl_GetDoubleFromObjwill be called to extract the
value to pass in, the call to the implementation will be done, then the
resulting INT will be converted to a ​Tcl_Obj*using ​Tcl_NewIntObjor
Tcl_NewWideIntObj​, and then stored as the result with
Tcl_SetObjResult​.

Below this level are the basic organization levels that implement the type
mapping, know how to translate constants, issue LLVM IR instructions and
manage the interface to the LLVM module, functions and basic blocks. A
substantial part of what the low level code does is act as a sanity checker, e.g.,
ensuring that non-trivial LLVM type constraints are maintained so that rather
than causing a process abort (by far the most common failure mode when
working with LLVM) coding errors generate a Tcl error that can be debugged in
the usual manner.

Performance Measurements
The performance gains expected from the compilation to machine code are
varied. For heavily-numeric code, the gains will come from being able to avoid
the costs of getting argument values out of ​Tcl_Obj​s, determining the exact
operation to apply, and putting the value back into a ​Tcl_Obj(including
avoiding a call into the value allocation subsystem, though that should be
relatively quick). For true string-based code (e.g., where a lot of strings are being
concatenated into a longer string) the gains would be expected to be relatively

modest, as the implementation functions lean on the Tcl API and that is
efficiently implemented. List-heavy and dictionary-heavy code may be between
these extremes, as it will gain from improved reference management (such as
effectively being able to avoid copies) but will still be drawing on Tcl’s API.

Performance figures are computed on an idle 2.7GHz Intel Core i7. Performance
ratios are expected to be constant on all similar platforms. The build was done
using LLVM 3.6; performance characteristics are very similar when using other
versions of LLVM (we currently support 3.5, 3.6 and 3.7; 3.4 lacks a few critical
features in assertion support). We used timing runs with 1359 iterations (using
more iterations was not found to yield more meaningful results) and reran the
timing runs 4 times each and took the minimum execution time, so as to
minimize OS-induced jitter; the execution scripts used with time are objects that
are not used for anything else (i.e., they are explicitly de-duplicated) and a
dummy timing run is used initially to avoid the initial bytecode compilation cost
of the timing script itself. Acceleration factors are the ratio of the difference in
time taken to the time taken after acceleration; an acceleration of 100% is
therefore a halving of the time to execute an operation.

Sample Procedure

Time​ (µs) Acceleration
(%)

Uncompiled Compiled

fib 12.15  0.4758 2452.90

cos  6.277 0.3936 1494.91

replacing  1.233 0.8792   40.24

listjoin  2.300 0.6946  231.08

wordcounter 18.67  5.660   229.86

errortester 13.73  4.999   174.54

Table 1:​ Summary of measured timings and acceleration factors.

Numeric Performance

It is in the area of numeric code that the most impressive improvements to
performance are seen. For example, this procedure (which we use as a test of
combined integer performance):

proc fib {n} {
 set n [expr {int($n)}]
 if {$n < 1} {
 return 0
 }
 set a 0
 set b 1
 for {set i 1} {$i < $n} {incr i} {
 set c [expr {$a + $b}]
 set a $b
 set b $c

 }
 return $b
}

Goes from taking 12.15µs to compute ‘​fib85​’ to 0.4758µs, an acceleration of
2452.90%, i.e., over 25 times faster!

Floating-point performance is also substantially improved. This procedure is our
main test of that (though it also uses some integers):

proc cos {x {n 16}} {
 set x [expr {double($x)}]
 set n [expr {int($n)}]
 set j 0
 set s 1.0
 set t 1.0
 set i 0
 while {[incr i] < $n} {
 set t [expr {-$t*$x*$x / [incr j] / [incr j]}]
 set s [expr {$s + $t}]
 }
 return $s
}

It goes from taking 6.277µs to compute ‘​cos1.2​’ to 0.3936µs, an acceleration of
1494.91%, i.e., nearly 16 times faster, and only marginally slower than the cosine
implementation in the standard C math library.

The main thing to note about the code above is that we are using the ​int()and
double()functions to act as input type coercions. These are the only ways in
which we are not writing ordinary Tcl code.

String Performance

The difference in string performance is nothing like as impressive, largely
because Tcl’s string performance is actually already pretty good (provided care
is taken with reference count management). For example:

proc replacing {from to} {
 set s abcdefghijklmnopqrstuvwxyz
 set from [string first $from $s]
 set to [string last $to $s]
 return [string replace $s $from $to \
 [string cat > [string range $s $from $to] <]]
}

This is accelerated from taking 1.233µs to run ‘​replacingek​’ to taking
0.8792µs, which is a modest 40.24% faster. Longer string-based code might be a
bit better, but this is the sort of performance improvement that is expected, as
the limiting factors are often to do with memory management and the cost of
doing the copies.

List and Dictionary Performance

Performance is substantially better with lists and dictionaries, so much so that
they can be used instead of some other built-in operations. For example, this
code:

proc listjoin {list} {
 set result ""
 set sep ""
 for {set i 0} {$i < [llength $list]} {incr i} {
 append result $sep [lindex $list $i]
 set sep ","
 }
 return $result
}

Goes from taking 2.300µs to compute ‘​listjoin{abcdefgh}​’, to
taking 0.6946µs, which is 231.08% faster. For comparison, replacing the body
with ‘​join $list ","​’ creates a procedure that takes 0.8326µs.

Similarly, we can use dictionaries to simulate arrays (provided we don’t need to
support traces, which we currently cannot handle anyway). This allows this
code:

proc wordcounter {words} {
 foreach word $words {
 incr count($word)
 set done($word) 0
 }
 lmap word $words {
 if {$done($word)} {
 continue
 }
 set done($word) 1
 list $word $count($word)
 }
}

To go from taking 18.67µs on a short sample text to taking 5.660µs, which is
229.86% faster.

Error Handling Performance

This is not a case that has been optimized for, but there are some reasonable
performance improvements possible anyway. In particular, LLVM’s optimizer
makes short work of most of the complexity of the try command, so with this
procedure:

proc errortester {x} {
 set msg ok
 try {
 if {[string length $x] == 3} {
 error xx$x
 }
 } on error msg {

 error "error occurred: $msg"
 }
 return $msg
}

The time to do ‘​catch{errortesterabc}​’ goes from 13.73µs to 4.999µs,
which is 174.54% faster, and to do ‘​catch{errortest4qwerty}​’ (which
doesn’t exercise the error path) goes from 0.5955µs to 0.2335µs, which is
155.02% faster. At least some of that comes from being able to disentangle the
knot of error handling paths and construct simpler code paths.

Future Directions
Some bytecodes remain to be implemented, or have ​extremely sketchy
implementations at the moment. For example, the current implementations of
the bytecodes that support the ​unsetcommand just overwrite the variable with
a constant, and the bytecodes that support ​infoexistsdo not convert at all
(despite the fact that it should be trivial to make them work). There are also a
substantial number of opcodes that provide various forms of introspection of the
interpreter that we do not currently support, such as getting the current
namespace or the current TclOO context object. We also currently do not support
bignums due to it being non-trivial to pick up the correct C ​#define​s in order to
access them correctly, and certain functions not being exposed via the Tcl stub
API. These are not fundamentally difficult problems to overcome.

However, the main challenges are more substantial.

We currently do not do a good job at all at handling the invocation of other
commands except for selected white-listed math functions. This is bad enough
when it comes to the handling of simple commands that are not bytecode
compiled (e.g., ​split​, ​join)where we could easily do better than we do now,
but gets rapidly more complex when dealing with commands that may deal with
variables (e.g., ​regexp​, ​regsub)as the compilation process does not produce a
conventional Tcl stack frame.

Where we invoke commands that are actually procedures that are being
compiled at the same time, we should be able to avoid going via the Tcl command
dispatch engine and use a direct call of the code that we generate. However,
doing this may substantially change the type signature that we are working with;
we must tackle inter-procedural analysis to solve this.

A substantial fraction of Tcl procedures involve access to variables that are not
defined in the local scope; if you look at an average procedure, there’s a fairly
high chance that at least one of the commands ​global​, ​variableand ​upvarwill
be used, or that a fully-qualified variable name will be present. We cannot
currently handle these at all, yet we must if we are to bring the benefits
described in this paper more widely to the average Tcl programmer.

At a higher level, the challenges are more to do with how to extend beyond
procedures to handling TclOO methods (we do not even know whether this is
easy or difficult yet) and leveraging up to the package level.

Another challenge is how to integrate this with normal workflow. The current
compiler is rather slow — especially the critical optimization phase — so there’s
a need for either allowing code to be compiled in parallel with using it, or for
there to be an option to perform the compilation as a separate out-of-band
phase. There’s also potential for caching the generated code for future reuse,
which has its own set of complexities (e.g., whether to share between users, how
to ensure that the caches are correct, whether to redistribute).

Furthermore, we currently assume that code is specific to a particular
interpreter; being able to share the code inside the process would help make
doing efficient threaded code in Tcl much better, but would require substantial
changes to how we currently generate code.

References
[BHDG+] ​Boissinot, B., Hack, S. Dupont de Dinechin, B., Grund, D. & Rastello, F. Fast Liveness
Checking for SSA-form Programs. In ​Proceedings of the 6th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO '08)​ (pp. 35-44) Boston, Mass., USA: ACM.
[CFRW+] ​Cytron, R., Ferrante, J., and Rosen, B.K., Wegman, M.N. & Zadeck, F.K. (1991) Efficiently
computing static single assignment form and the control dependence graph. ​ACM Transactions on
Programming Languages and Systems (TOPLAS)​ 13, 451-490.
[GESA+] Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M. R., ... & Franz, M.
(2009, June). Trace-based just-in-time type specialization for dynamic languages. In ​ACM Sigplan
Notices​ (Vol. 44, No. 6, pp. 465-478). ACM.
[GouGou] Gough, J. J., & Gough, K. J. (2001). ​Compiling for the .Net Common Language Runtime​.
Prentice Hall PTR.
[HHCM] Ha, J., Haghighat, M. R., Cong, S., & McKinley, K. S. (2009). A concurrent trace-based
just-in-time compiler for single-threaded JavaScript. ​Proc. PESPMA​.
[KWMR+] Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Russell, K., & Cox, D. (2008).
Design of the Java HotSpot™ client compiler for Java 6. ​ACM Transactions on Architecture and Code
Optimization (TACO)​, ​5​(1), 7.
[LatAdv] Lattner, C., & Adve, V. (2004, March). LLVM: A compilation framework for lifelong
program analysis & transformation. In ​Code Generation and Optimization, 2004. CGO 2004.
International Symposium on​ (pp. 75-86). IEEE.
[MOSK+] Matsuoka, S., Ogawa, H., Shimura, K., Kimura, Y., Hotta, K., & Takagi, H. (1998, October).
OpenJIT-a reflective Java JIT compiler. In ​Proceedings of OOPSLA’98 Workshop on Reflective
Programming in C++ and Java​ (Vol. 92).

