Arggnne°

TIONAL LARORATORY

Swift/T: Dataflow Composition of Tcl Scripts
for Petascale Computing

Justin M Wozniak
Argonne National Laboratory and University of Chicago

http://swift-lang.org/Swift-T wozniak@mcs.anl.gov

/"\ VA MEMARTRENT G
\Z/ENERGY

Big picture: solutions for scientific scripting

SCIENTIFIC WORKFLOWS

The Scientific Computing Campaign

HINK about
what to run

= The Swift system addresses most of these components
= Primarily a language, with a supporting runtime and toolkit

N——
OQ 3

Goals of the Swift language

Swift was designed to handle many aspects of the computing campaign

Ability to integrate many application components into a new workflow application
Data structures for complex data organization
Portability- separate site-specific configuration from application logic

Logging, provenance, and plotting features

THINK

RUN

Goal: Programmability for large scale computing

= Approach: Many-task computing: Higher-level applications
composed of many run-to-completion tasks:

input— compute — output

Programmability

- Large number of applications have this natural structure at upper
levels: Parameter studies, ensembles, Monte Carlo, branch-and-bound,
stochastic programming, UQ

- Easy way to exploit hardware concurrency

Experiment management
- Address workflow-scale issues: data transfer, application invocation

The Race to Exascale

TOP500 leaderboard

= The exaflop computer: a quintillion (10'8)
floating point operations per second

= Expected to have massive (billion-way)
concurrency

= Significant issues must be overcome
- Fault-tolerance
- 1/0
- Heat and power efficiency
- Programmability!

= Can scripting systems like Tcl help? #5 Mira: 8.5 PF, 4 MW (Argonne)

- | think so!
by

6

Outline

Introduction to Swift/T
- Introduction to MPI
- Introduction to ADLB
- Introduction to Turbine, the Swift/T runtime

Use of Tcl in Swift/T
Interesting Swift/T features
Applications

Performance

High-performance dataflow for compositional programming

SWIFT/T OVERVIEW

Swift programming model:
all progress driven by concurrent dataflow

(Int r) myproc (int 1, int 7j)
{
int x = A(1);
int y = B(J);
r = xXx +y;

= A () and B () implemented in native code
= A () and B () run in concurrently in different processes
= r is computed when they are both done

= This parallelism is automatic
= Works recursively throughout the program’s call graph

Swift programming model

= Data types

int i=4;
int All;
string s = "hello world";

= Mapped data types

file image<"snapshot.jpg">;

= Structured data
image A[]<array mapper..>;
type protein {

file pdb;

file docking pocket;

}
bag<blob>[] B;

= Conventional expressions

if (x == 3) {

y = x+2;

s = sprintf("y: %i", y):
}

= Parallel loops
foreach £,i in A {
B[i] = convert(A[i])

}

= Implicit data flow
merge (analyze (B[0], B[1]),
analyze (B[2], B[3]));

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011

10

5
Swift/T: Swift for high-performance computing

For extreme scale,

Had. this: we need this:
(Swift/K) (Swift/T)
Dataflow program | Dataflow program I

1 ———
Dataflow engine] { Engine ;-[Engine]

500 tasks/s Control tasks

[Scheduler] [Queue }L-[Queue]
| | Work stealing |
...| Task I | Task l ces | Task l

L-15Btasks/s —

Centralized evaluation Distributed evaluation

* Wozniak et al. Swift/T: Scalable data flow programming for
distributed-memory task-parallel applications . Proc. CCGrid,

2013. 11

Original implementation:

Swift/K (c. 2006) - scripting for distributed computing
Still maintained and supported

4 N
Swift ,
script [

Appllcatlon
Programs

@bmlt host (login node, Iaptop, Linux server)

IJ‘II L.\l\ﬁll\‘.: or
\\ © CHICAGO

Clouds:

_{ Amazon EC2, '
XSEDE Wispy, ...
Data server \ /

Swift/K runs parallel scripts on a broad range
of parallel computing resources

Pervasive parallel data flow

parent task a a writes data
spawns
child task b ™. °

d waits for
data

O Task

Shared
- data item

..~ Tlask spawn
dependency
Data
dependency

« Simple dataflow DAG on scalars
* Does not capture generality of scientific computing and analysis
ensembles:
* Optimization-directed iterations
* Conditional execution
* Reductions

MPI: The Message Passing Interface

= Programming model used on large supercomputers
= Can run on many networks, including sockets, or 'MPI

shared memory

= Standard API for C and Fortran, other languages

have working implementations
= Contains communication calls for
- Point-to-point (send/recv)
- Collectives (broadcast, reduce, et
= Interesting concepts

- Communicators: collections of
communicating processing and
a context

- Data types: Language-independent| :.

data marshaling scheme

T "mmm"-n

luuuluql'l'l |||I|,|u|||h il BRI 1
' I “IH'.!'!+'!Il!':".’.H"!'.T
ituumwuﬁuw.wuﬁl il

hﬁ'm i '14

14

ADLB: Asynchronous Dynamic Load Balancer

= An MPI library for master-worker Workers

workloads in C OO0
= Uses a variable-size, scalable
network of servers

= Servers implement .’
work-stealing @)

= The work unit is a byte array
= Optional work priorities, targets,
types

o AN
= For Swift/T, we added: O C

@
- Server-stored data @ -~

- Data-dependent execution @ @
- Tcl bindings!

* Lusk et al. More scalability, less pain: A
simple programming model and its
implementation for extreme computing.
SciDAC Review 17, 2010. 15

5
Swift/T Compiler and Runtime

Swift STC | Turbine Turbine
Script Compiler Code Execution
mpiexec
Data Semantic Task / Data
Definitions . Analysis Dependencies | L Interpreter
Dataflow | | | | Flattening& | [~ = Memory T Turbine
Expressions Optimization ‘Management Features
External Code lerary ADLB
Functions Generation Access User
‘ ' ‘ Libraries
= STC translates high-level - Create/Store/Retrieve typed data
Swift - Manage arrays
expressions into low-level - Manage data-dependent tasks

n ti
- ozn?aﬁ ? q E arge-scale application composition via distributed-memory

data flow processing. Proc. CCGrid 2013.
* Armstrong et al. Compiler techniques for massively scalable implicit
task parallelism. Proc. SC 2014.

16

Turbine Code is Tcl

= Why Tcl?
- Needed a simple, textual compiler target for STC
- Needed to be able to post code into ADLB
- Needed to be able to easily call C (ADLB and user code)

= Turbine
- Includes the Tcl bindings for ADLB

- Builtins to implement Swift primitives in Tcl
(arithmetic, string operations, etc.)

= Swift/T Compiler (STC)
- A Java program based on ANTLR
- Generates Tcl (contains a Tcl abstract syntax tree APl in Java)
- Performs variable usage analysis and optimization

17

.
Distributed Data-dependent Execution

STC can generate arbitrary Tcl but Swift requires dataflow processing
= |Implemented this requirement in the Turbine rule statement

= Rule syntax:
rule [list inputs] "action string" options..

= All Swift data is registered with the ADLB distributed data store
= Rules post data-dependent tasks in ADLB

= When all inputs are stored, the action string is released
= The action string is a Tcl fragment

18

Translation from Swift to Turbine

= Swift:
—
x1l = 3;
s = "value: "; LXl A_l
%2 = 2; r———ﬁ__} P
int x3; X2 pnntf —/
printf ("$s%i", s, x3); ~—
X3 = x1+x2; —_— OUtpUt
S
 —

= Turbine/Tcl:

literal x1 integer 3
literal s string "value: " Tcl variables contain TDs (addressds)
literal x2 integer 2
allocate x3 integer
rule [list $x3] "puts \[retrieve S$s\]\[retrieve S$x3\]"
rule [list $x1 S$x2 1 \

"store integer $x3 \[expr \[retrieve S$x1\]+\[retrieve S$x2\J\]"

19

5
Interacting with the Tcl Layer

Can easily specify a fragment of Tcl to access:

(int c¢) add(int a, int b) "turbine" "0.0" |
"set <<Kc>> [expr <<Ka>> + <<p>> |"
17

= Automatically loads the given Tcl package/version (turbine 0.0)

= STC substitutes Tcl variables with the <<->> syntax

= Typically want to simply reference some greater Tcl or native code
library

20

Code

5
Example distributed execution

Al2] = f(getenv (“N"));

Evaluate dataflow operations

Perform getenv ()
Submit £

Workers: execute tasks /Task put
Task get

Subscribe to A[2]
Submit g

Task put
Task get

Process £
Store A[2]

Process g
Store A[3]

* Wozniak et al. Turbine: A distributed-memory dataflow engine for high
performance many-task applications. Fundamenta Informaticae 128(3),

2013

21

Examples!

R\

22

.
Extreme scalability for small tasks

¥

z 2

Tasks/sec

0.1 ¥
0.01M
0.001M

S o &‘\‘3" '\5‘b \0"
CPU Cores

5P

6‘2’& v

* 1.5 billion tasks/s on 512K cores of Blue Waters, so far

* Armstrong et al. Compiler techniques for massively scalable
implicit task parallelism. Proc. SC 2014.

23

Characteristics of very large Swift programs

gnEZ(:joo, Y = 100; = The goal is to support billion-way
o B[[]][;]’ concurrency: O(109)

foreach x in [0:X-1]{
foreach y in [0:Y-1]{

_ = Swift script logic will control
if (check(x, y)) {

Alx]ly] = g(f(x), f(y)); trillions of variables and data
}else { dependent tasks
AlX]ly] = 0;

}} = Need to distribute Swift logic

Blx] = sum(A[x]); processing over the HPC compute

; system

24

Swift/T: Fully parallel evaluation
of complex scripts

Start
int X =100, Y = 100;
int AT puter
int BJ: Loops
foreach x in [0:X-1]{ Inner
foreach y in [0:Y-1] { Loops
if (check(x, y)) {
AIXIIY] = 9(fx), T)); check()
}else { then / else
Alx]ly] = 0; ()
}
}
B[x] = sum(A[x]); 90 . g::/vn
} -
sum() Task
— Data
wait/write

* Wozniak et al. Large-scale application composition via distributed-memory
data flow processing. Proc. CCGrid 2013.

25

Swift code in dataflow

= Dataflow definitions create nodes in the dataflow graph
= Dataflow assighments create edges
= |n typical (DAG) workflow languages, this forms a static graph

= In Swift, the graph can grow dynamically - code fragments are
evaluated (conditionally) as a result of dataflow

= Data dependent-tasks are managed by ADLB

x = g(); ‘LX

if (x > 0) {

>
n = f£(x); N e
foreach 1 in [0:n-1] { rooee
output (p (1)) ‘l'n

b}
foreach 1 .. {
output (p (1)) _|_‘
I
I

26

5
Hierarchical programming model

Top-level dataflow script
workflow.swift

Swift/T dataflow

< ADLB + work-stealing / MPI >
4 i SWIG-generated Wrappers
ser Tc

= Including MPI libraries

Support calls to embedded interpreters

/ Swift Development Pattern \
\

s

Swift/T - Multi-Node Scripting +

\

% eye() + ones()..
S ” ”
Library

\ C, C++, Fortran

We have plugins
for Python, R,
Tcl, Julia, and

. QzE%GEkPeE al. Toward computational experiment management
via multi-language applications. Proc. ASCR SWP4XS, 2014.

* Wozniak et al. Interlanguage parallel scripting for distributed-
memory scientific computing. Proc. CLUSTER 2015.

28

tasks/second

Swift/T: Enabling high-performance scripting

= Write site-independent scripts in Swift language
= Execute on scalable runtime: Turbine
= Automatic parallelization and data movement

= Run native code or script fragments as
application tasks

= Rapidly subdivide large partitions for ‘m

MPI libraries using MPI 3

1 toghare Swift/T worker Il
R » Swift/T I'I-l
A control]”;{][][]

— o, process | l

- 5 MPI

. 64K cores of Blue
100000 ; Waters
" 2 billion Python tasks

o 100 20 14 willion Pydhons/s 1o l

processes

a 29

Swift/T features for task control

NOVEL FEATURES: RUNTIME

Task priorities

= User-written annotation on function call

foreach 1 in 0:N-1 {
@prio=i f(i);
}

= Priorities are best-effort and are relative to tasks on a given ADLB
server

= Could be used to:
- Promote tasks that release lots of other dependent work

- Compute more important work early (before allocation expires!)
- Deal with trailing tasks (next slide)

31

Prioritize long-running tasks

= Variable-sized tasks produce trailing tasks:
addressed by exposing ADLB task priorities at language level

N N W
o U O

load (processes)
— —
o v

(o)

1,400 1,425 1,450 1475 1,500 1,525 1,550 1,575 1,600

time (seconds)

— Load without priorities -~ Load with priorities

5
Stateful external interpreters

= Desire to use high-level, 34 party algorithms in Python, R to
orchestrate Swift workflows, e.g.:

- Python DEAP for evolutionary algorithms
- R language GA package
= Typical control pattern:
- GA minimizes the cost function
- You pass the cost function to the library and wait
= We want Swift to obtain the parameters from the library
- We launch a stateful interpreter on a thread

- The "cost function” is a dummy that returns the MPI Process
parameters to Swift over IPC Load balancing|1 MPI >

- Swift passes the real cost function results back : I
to the library over IPC Swift worker

= Achieve high productivity and high scalability Python/R |
- Library is not modified - unaware of framework! T55ks ‘ Results
- Application logic extensions in high-level script

IPC GA

5\
Unnecessary details: Epidemics ensembles

. : for (int generation=0, generation<G; generation++) {

Swift SCI'Ipt params = @location=L

get _params_from _deap(); // returns array =~
J

foreach param in params { repast(param); }
J

Targeted }
~work

Distribute normal work

Load

Balancer Worker Worker Worker

Repast Repast | Repast

Epidemic simulators

« Wozniak et al. Many Resident Task Computing in Support of
Dynamic Ensemble Computations. Proc. MTAGS 2015.

34

Ebola spread modeling

= Epidemic analysis- combining agent-based models with observation
= Received emergency funding late last year

= Combines Python-based evolutionary algorithm with high-
performance agent-based epidemic modeling code

= Want to compare simulations with observations in real-time as
disease spreads through a population

L H
= =
g i
5 e
g T’- b
om -
< :
Q

2

[7}] H
s :
Time -

35

Features for Big Data analysis

 Location-aware

scheduling
User and runtime coordinate data/

pheations
Location C@)
annotations

Hard/soft locations

Runtime |

Cache FS

Distributed
dat— ~

* F. Duro et al. Exploiting data
locality in Swift/T workflows using
Hercules .

Proc. NESUS Workshop, 2014.

* Collective I/0

User and runtime coordinate data/
task locations

Application
/0 hook

Runtime |

MPI-10 transfers

1=

Distributed

Parallel FS

* Wozniak et al. Big data staging with
MPI-10 for interactive X-ray science.
Proc. Big Data Computing, 2014.

36

.
Abstract, extensible MapReduce in Swift

main {
filedll; « User needs to implement
Int N = string2int{argv("N")); map_function() and merge()
// Map phase — .
foreach i in [0:N-1] { * These may be implemented
file a = find_file(i); in native code, Python, etc.
}d['] = map_function(a); Could add annotations
J/ Reduce phase * Could add additional custom
file final <"final.data"> = merge(d, 0, tasks-1); appllcatlon IOgIC
}
(file o) merge(file d[], int start, int stop) {
if (stop-start == 1) {
// Base case: merge pair Loop indices ~
0 = merge_pair(d[start], d[stop]); (i) - d =
// Merge pair of recursive calls 1 < =15 ;I-‘\ =l =
n = stop-start; 1= 4171s . el | £ “ b7 e
s=n%2; 2 2 lalqs P (L2 E L] &
0 = merge_pair(merge(d, start, start+s), 3 4= |- ; .] S '31 g
merge(d, start+s+1, stop)); - a T - - < ——
B 4 b 3| (4] o T
. — — —
L
.

a

Hercules

= Want to run arbitrary workflows over distributed filesystems that expose
data locations: Hercules is based on Memcached

- Data analytics, post-processing
- Exceed generality MapReduce: without losing data optimizations

= Can optionally send a Swift task to a particular location with simple
syntax:
foreach 1 in O0:N-1 {
location L = locationFromRank (i) ;
@location=L f(1);
}

= Can obtain ranks from hostnames:
int rank = hostmapOneWorkerRank ("my.host.edu");

= Can now specify location constraints:
location L = location(rank, HARD|SOFT, RANK|NODE) ;

= Much more to be done here!

38

GeMTC: GPU-enabled Many-Task Computing
Motivation: Support for MTC on all accelerators!

Goals: Approach:

1) MTC support 2) Programmability Design & implement GeMTC

3) Efficiency 4) MPMD on SIMD middleware:

5) Increase concurrency to warp level zj)e\c’i\?gages GPU 2) Spread host/

3) Workflow system integration (Swift/

Server Server

CPU Worker] CPU Worker

CPU Worker] CPU Worker] -

CPU Worker]

GeMTC Worker) y GeMTC Worker] d GeMTC Worker]

What just happened?

LOGGING AND DEBUGGING

Logging and debugging in Swift

= Traditionally, Swift programs are debugged through the log or the
TUI (text user interface)

= Logs were produced using normal methods, containing:
- Variable names and values as set with respect to thread
- Calls to Swift functions
- Calls to application code

= Arestart log could be produced to restart a large Swift run after
certain fault conditions

= Methods require single Swift site: do not scale to larger runs

41

Logging in MPI

The Message Passing Environment (MPE)
Common approach to logging MPI programs
Can log MPI calls or application events - can store arbitrary data

Can visualize log with Jumpshot

Partial logs are stored at the site of
each process
- Written as necessary to shared
file system
« in large blocks
« in parallel

- Results are merged into a big log file
(CLOG, SLOG)

Work has been done optimize the
file format for various queries

Mv!)lnuu-n ¢ P nAgAn OMNS onl.

200 Lowt Usbi e T Veow et - Ml."! - _u - w“" l-~~
"

}/|ICODDOCOCDDOOCDODDOODD E

Logging in Swift & MPI

= Now, combine it together
= Allows user to track down erroneous Swift program logic

= Use MPE to log data, task operations, calls to native code
= Use MPE metadata to annotate events for later queries

= MPE cannot be used to debug native MPI programs that abort
- On program abort, the MPE log is not flushed from the process-local cache
- Cannot reconstruct final fatal events

= MPE can be used to debug Swift application programs that abort
- We finalize MPE before aborting Swift
- (Does not help much when developing Swift itself)
- But primary use case is non-fatal arithmetic/logic errors

» Wozniak et al. A model for tracing and debugging large-scale task-parallel
programs with MPE. Proc LASH-C, 2013.

43

N
Visualization of Swift/T execution

» User writes and runs Swift script
= Notices that native application code is called with nonsensical inputs
= Turns on MPE logging - visualizes with MPE

Process rank

‘< 1a] >

| | I I | | I | | | 1 1 |
- PlP a9 73998 TN 79948 M Ty % 79905 ™ 978 % 73908 »

Blu Time >
Server process (ndumpshotwiew obP|PHigpphicationy ¢uw)

= Color cluster is task transition:
= Simpler than visualizing messaging pattern (which is not the user’s code!)
= Represents Von Neumann computing model - load, compute, store

I |

44

Debugging Swift/T execution

= Starting from GUI, user can identify erroneous task
- Uses time and rank coordinates from task metadata

= Can identify variables used as task inputs

= Can trace provenance of those variables back in reverse dataflow

e ||
—___\
— S a——
erroneous task
Aha! Found script defect. +— « « (searching backwards)

45

o\

Molecular dynamics simulation, X-ray science data processing

APPLICATIONS

46

K
Can we build a Makefile in Swift?

= User wants to test a variety of compiler optimizations

= Compile set of codes under wide range of possible configurations
= Run each compiled code to obtain performance numbers

= Run this at large scale on a supercomputer (Cray XE6)

= In Make you say:
CFLAGS = ...
f.o : f.c
gcc $(CFLAGS) f.c -o f.o

In Swift you say:

string cflags|[] = ...;
f o = gcc(f ¢, cflags);

47

CHEW example code

Apps Swift code
app (object_file o) gcc(c_file ¢, string cflags[]) { string program_name = "programs/program1.c”;
/1 Example: c_file c = input(program_name);

// gcc -¢ -02 -o f.of.c

"gec” "-c" cflags "-0" 0 c;
) // For each

foreach O_level in [0:3] {
make file names...

a x_file x) ld(object_file o[], string ldflags
PP {) idiob) 1 s Bsll) ¢ /1 Construct compiler flags

// Example:
/] gcc 0 f.xfl.of2.0... string O_flag = sprintf("-0O%i", O_level);
"gcc” ldflags "-0" X 0 string cflags[] = ["-fPIC", O_flag];
3
object_file o<my_object> = gcc(c, cflags);
app (output_file o) run(x_file x) { object_file objects[] =[0];
"sh” "-c" x @stdout=0; string ldflags[] = [];
3 // Link the program
x_file x<xmy_executable> = |ld(objects, ldflags);
app (timing_file t) extract(output_file o) { // Run the program
“tail” "-1" 0 "|" "cut” "-f* "2" "-d" " " @stdout=t; output_file out<my_output> = run(x);
3 // Extract the run time from the program output

timing_file t<my_time> = extract(out);

48

Swift integration into NAMD and VMD

www. ks.uiuc.edu/Research/swift

€ C f O wwwkssiuc.edu/Research/swilt/ Aom
Fages Qotem Mam Cleghosd Mas @ waseds [l Swmic o (Gl Other Bockmants

MM CENTTR FOR MACROMON FOLA AR MOOK]L W0 L SROMIrOMMA NCS UNYTRETY OF 11 M0 AT UMIARA CMAMP AOM

THEORETICAL and COMPUTATIONAI

Biornuysics Grour

Hormm Reaearch Publications Software Instruction News Galleries Facliities Abowt Us

Fame Integrating NAMD and VMD with Swift/T
NAMD ard VD hawe recertly Seen puccessflly cougled % the Swift'T high perfo parniel 9% developnd as part of the ExM project, a collatoration led by Asgorne Natioral Laborstory wih
MdmnmdMMuamunwulqu!Mm Ml-mumumdnmmmmnrmm Standad NAMD
2 % and WMD 1.9 2 binavies can be lunched across e nodes of a paraliel computer and eficiectly Swar progr with frctiors implermanted In the ambadded Tol scrigting larguage. The NAMD ard

VMD usar communties am alteady tamiar with Tol and Tl alows access 10 the two programs’ complete funchoraiity The NAMD mtegration with Swift'T has Deen usad 10 Semanstrate n m multiglexing of n wphcas acoss 3
smaller atitrary rumber = of NAMD processes, 8 very complen capabiity % implamect with noemal NAMD scripting that car Be esprossed naturally in yndee 100 fres of Swiy'T code.

AN exarrple fies: disectiony. tar archive

> WAty VMD SwifU'T Hello World

" Momcergence
» Tunewe VMD and Turtime must be bult sith compatitle Tel itrases 20 that VMDD can dyramically load Itictutirs 2o
:. . * Example command Mpiexec -n B vadwrapper -e vadawift.tel
. * Waapper songt 10 run standard VMDD under NP1 vimdwragper
Ve g T * Tol package ard Swft startup for VMDD vndewi® tel
? Griving Blomedcs * St pragram source cote hello sl
Pomar o Swft complier Tol autpett hellio Sl
 Coarerwtons
b Ot Popies NAMD Switt'T Replica Exchange
Software NAMD and Tuters must Do Dt with compatitie To! Rrares 50 that NAMD can $yrancally iood REcbutve 5o
Quereach * Examgple command mpiexec -n 8 naadwrapper namdswift.tcl apoal.namd ~-rum 0 ~-source $cwd/replica.tel < /dev/null &
o Whigodr SCgE 10 fun muiticons NAMD under WP namdwripper
. ;U‘MWNMWMM Narmdye il
. Program SOt Codk replica swift .
e See Dalke and Schulten, Using Tcl for
NAMD Swift'T MPI Tight Bindieg . . . o
e s NAMD st bt e s oA w2t e et MOlECULAT Visualization and Analysis,
communcator. Chamme+, NAND, and Tutting must b Bull with compatitle Tol and
o Eximple commane mplexec -n 32 Linux-x86_64-gee.ng 1997' s 8
+atdout /var/tap/etdout.¥d.log < /dev/null &
o Patch for Craeme + sounce code: charmmewift patch
o Patch for NAMD source code namdewi® patch
Furvint by 0 et Marhmas lwutose bw Advyved trawe o Tirtviogy St orw lwtases o e Nen el Lrawe Previen o Payncs Compaer Sracre 0o Beaptyn s o vy o 1owmy @ Phece Dheepe g
mm:‘ ﬁ < Compnt Un © Were 37 TN D008 % DOPYTPIRE T acT SRIGNNY \ Tary hunr DO et meotet 08 0 by 24 0 00 soceneen wece 1% s 204 ILLINOIS
::_:w-w o g o s e .- —
-

NAMD Replica Exchange Limitations

= One-to-one replicas to Charm++ partitions:
- Available hardware must match science.
Batch job size must match science.
Replica count fixed at job startup.
No hiding of inter-replica communication latency.
No hiding of replica performance divergence.

= Can a different

programming NAMD (C++)
? NAMD rank 0 | | Replica 1 J Replica2 | eee VMD
model help? o
Ensemble | Trajectory
control script | timelines alr?als)l'tsl:s
T —— Exchanges

Swift job

Benefits of using Swift within NAMD / VMD

Work by Jim Phillips and John Stone of UIUC NAMD Group (Schulten Lab) :

« NAMD 2.10 and VMD 1.9.2 can run Swift dataflow
programs using functions from their embedded Tcl
scripting language.

« NAMD and VMD users are already familiar with Tcl, and
Tcl allows access to the two apps’ complete
functionality.

« Swift has been used to demonstrate n:m multiplexing of
n replicas across a smaller arbitrary number m of NAMD
processes

* This is very complex to do with normal NAMD scripting
that can be expressed naturally in under 100 lines of
Swift/T code.

NAMD/VMD and Swift/T

Typical Swift/T Structure NAMD/VMD Structure
Top-level dataflow script NAMD (C++)
exchange.swift | Tel Evaluation (uplevel-eval)
Swift/T runtime Top-IeverI] dataflowf?cript
gxchange.swi
| SWIG-generated Tl wrappers | o SVT/T runtime

L MD1.c JL MD2.cpp L viz.cpp

\
Future work: Extreme scale ensembles

= Enhance Swift for exascale experiment/simulate/analyze
ensembles
- Deploy stateful, varying sized jobs
- Outermost, experiment-level coordination via dataflow
- Plug in experiments and human-in-the-loop models (dataflow filters)

- JointL
ift

53

Technology transfer - Parallel.Works

Companies increasingly depend on computer modeling and
analysis for product designs and critical business decisions

— o
- — N : B '.\'!
. R e
-~ = .
- S
Pharma, Materials, Vehicles, Planes, Wind Oil and Gas Reservoirs Buildings, Infrastructure,
Batteries Turbines Urban Planning

Companies need to compute to compete:
* more design simulations at higher fidelity to optimize products and services.
* more big-data analyses, faster, to ask more questions.
The end of “Moore’s Law” requires parallel computing to meet these needs.
Parshd Workions. LLC Allrghts reer B parallel.works

| An mcubat:on venture of the University of Chicago’s CIE: Chicago Innovation Exchange
http://cie.uchicago.edu

Technology transfer - Parallel.Works

The parallel.works solution

Select third-party
and open-source
applications

Link apps
together to
create a workflow
storage resources

and desired
time to solution

Select compute and I

Run simulation
workflow and

visualize results

014, Pardd Workflows, LLC. Al nghts reserved 4 para”el.works

Technology transfer - Parallel.Works

parallel.works Service Architecture

Parallel. Works public doud infrastructure

Customer-managed infrastructure

14, Parsbd Workfiows, LLC. Al ights reserved 22 parallel.works

Summary

= Swift: High-level scripting for outermost programming constructs
= Heavily based on Tcl!

= Described novel features for task control and big data computing
on clusters and supercomputers

= Thanks to the Swift team: Mike Wilde, Ketan Maheshwari, Tim
Armstrong, David Kelly, Yadu Nand, Mihael Hategan, Scott Krieder,
loan Raicu,
Dan Katz, lan Foster

= Thanks to the Tcl organizers

= Questions?
RUN

—
e
=z
P
v

N

57

