biot - Information Pipelines in loT-Clouds

Dr. Emmanuel Frécon
SSE - Software and Systems Engineering Laboratory
SICS Swedish ICT
emmanuel@sics.se

Abstract
There are a plethora of (proposed) standards and proprietary solutions for
the Internet-of-Things: from protocols, to data modelling, and
abstractions. Integrating applications struggle to move data between
these silos. Biot implements a generic network-aware information pipe to
move data from anywhere to anywhere: from devices to the cloud
(sensing), from the cloud to devices (actuating) but also between clouds
(integration). Biot is tuned to be embedded in modern cloud architectures
based on micro-services and has been deployed within CoreOS and
Docker Swarm clusters.

1. Introduction

The Internet of Things promises a near future where domestic and work environments, but also
cities, factories or even human bodies, are augmented with sensors and actuators that all are
Internet entities. The real power of these technologies relies in their communicating abilities,
thus in applications that are able to combine and connect sensor data from different sources
and of different types in order to provide an enhanced experience or an additional service.

An example set in the domestic domain would be the combination of temperature sensors in fire
detectors, of sensed external climate data from a neighbouring weather station and weather
forecasts to tune the functioning of the heating system. When the heating system is heavily
dependent on the electricity grid, when a ground heat pump is used for example, tuning can
further be enhanced to accommodate the current load on the electricity grid and introduce slight
delays or anticipate inner temperature increases to better spread out grid demand on a larger
scale. The realisation of such a scenario requires complex data flows between a number of
actors and organisations, including business models that respect personal integrity and
generate value at several levels of the data flow.

This paper presents biot, the "Bridge for the Internet of Things", a flexible tool for bridging the

mailto:emmanuel@sics.se

data silos that otherwise occur when vendors try to lock in customers in proprietary solutions
covering sensors and actuators of various sorts and their corresponding mobile and web apps.
While biot is tuned to create information flows between heterogeneous APIs within web clusters,
it has also been used closer to the wireless sensor networks, in gateways or similar. Simply put
biot accepts a number of sources, acquires data from these sources, extracts any number of
variables from this data and pushes templates using these variables to any number of
destinations. In other words, biot is an easy APl masher for the Internet of Things. Biot uses
domain-specific configuration files to describe its sources, variables and destinations, while
template generation relies on the flexibility of the Tcl language to control the output to
destinations. Biot supports a wide-range of protocols for its sources and destinations and can be
encapsulated in Docker' components for scalability and security.

2. Motivation and Background

As the Internet-of-Things is gaining momentum and as connected devices are being deployed
on bodies and in homes, offices, factories or cities, many competing (and sometimes similar)
technologies and solutions are being deployed. There are several radio and (meshing)
protocols: ZigBee [1], Z-Wave [2], BLE (aka. Bluetooth Smart) [3], 6LOWPAN [4] to mention a
few; but also several transmission protocols: HTTP [5], CoAP [6], WebSockets [7], MQTT [8],
XMPP [9] and several data modelling protocols: LWM2M [10], XMPP, WoT [11], AllJoyn [12]. In
addition, there are a number of proprietary solutions, most of which with an open and/or
well-specified API to send or receive data to and from the sensor networks.

Given the current pace of loT penetration, integrating legacy deployments into new solutions
already requires attention. Key to this integration is the ability to move data between the
different layers, protocols and APIs, or to map abstractions onto one another. Fortunately, most
of these protocols and specifications share a number of common points at the data level. For
example, JSON [13] and to a lesser extent XML [14], are prevalently used for the description of
sensor or actuator data. Different compression, minification or translation techniques are being
put in place to adapt to the resource constraints of sensor networks while still building upon the
flexibility of structured data representations.

Biot is a network-aware information pipe for the loT. Biot aims at easily bridging together the
various APIs that are involved in loT projects. There are other existing projects with similar
goals. For example, the core of Node-RED [15] consists of hiding the details of
acquiring/sending data to things and API. However, Node-RED focuses more on the visual
creation of loT applications, while biot mainly targets cloud applications with high data
throughput. Biot also shares some similarities to the DSA Links? of the IOT-DSA platform [16].

' Docker is a popular operating system-level virtualisation technology. Best starting point is probably the
online documentation at https://docs.docker.com/.
2 The list of available links can be found in the github repository, https://github.com/IOT-DSA/links.

https://docs.docker.com/
https://github.com/IOT-DSA/links

However, the purpose of those links is to abstract away data sources and protocols, while biot
focuses on the complete chain from the sources to the destinations.

On a broader scope, biot shares a number of ideas with systems and platforms for the
realisation of web mashups, e.g. the former Yahoo! Pipes or the WSO2 Mashup Server. Biot
differentiates itself through a specific focus on the Internet of Things and the (sometimes)
domain-specific protocols that are associated. Also, while Pipes or WSO2 will sometimes rely on
web scraping for getting data, biot lacks some of the flexibility necessary to such activities.

Developing for the Internet of Things requires a lot of plumbing code, probably because there
are so many protocols and APIs at hand. The motivation behind biot is the realisation of a
generic plumbing solution that would allow application designers and developers to focus on
essential details such as the flow(s) of data or how to extract information from the various
message formats involved, but less on low-level protocols or API details.

3. Requirements and Design

Biot tries to minimise network accesses as much as possible. This is because it also aims at
being able to communicate directly with sensor networks (or bridges that are tightly connected
to sensor networks), usually using modern protocols such as IPv6, CoAP or WebSockets. To
this end, biot introduces the concept of variables, together with a number of generic methods to
extract these from the information acquired at or sent by the source. All variables will be
extracted at once from source data before being pushed further to relevant destination
templates. In other words, even when polling is necessary, biot will try to maximise the
information flow by creating and/or updating all the variables in one go.

Biot also tries to minimise network accesses on the way to the destinations. For example,
variables that get extracted as a source is updated, are sent for treatment in one go in order to
trigger as many destinations as possible. The state of all relevant variables is represented
through an ephemeral snapshot to ensure data consistency on its way to destinations. Also the
order of the destinations is relevant in case there were some inter-dependencies.

All templating code is run in safe interpreters [17] to guarantee a minimum security level.
However, as biot mainly aims at being encapsulated into micro services such as docker
components, security measures are otherwise kept to a minimum. For example, biot can use the
output of external programs for data analysis without any sandboxing or restrictions over
program execution. The advantages of supporting any external program, and thus any protocol
that is not originally supported by biot, overcomes the security issues in the controlled context
that should be surrounding biot deployments.

Apart from the concept of global variables (see below), biot integrates with modern cloud
architectures through being able to acquire its settings from remote key-value stores. For
example, an instance of biot will be able to get its list of sources from a remote, cluster-local,
HTTP server or from a remote etcd [18] store. In addition, biot implements itself a REST-like [19]
interface to access and modify its variables. Whenever variables are modified through the web
interface, destinations will be triggered similarly to what happens when new source data has
reached biot.

The code base is modular and as portable as possible, so as to ease integrating the features
implemented as part of biot into other software. While biot is a command-line tool, ready for
docker packaging, the core of its implementation is leveraged as a number of libraries that can
be integrated in other software. All sources and destinations are implemented using a plugin
system to ease future extensions. Plugins are selected based on the URI scheme of the source
or destinations, and biot comes with plugins for HTTP, STOMP [20], syslog [21], piped external
programs, local files, XMPP, raw line-based TCP connections and websockets.

Biot uses the + sign in the scheme of URLs as a separator to provide extra information as to the
ways to get or send data from sources and to destinations. For example, specifying
http+put:// instead of the more common http:// will force a PUT operation when the HTTP
request is made. Biot uses the + sign as a separator and the keywords that it separates are
given to all source and destination plugins for internal interpretation.

4. Concepts

There are four major conceptual entities that are dealt with inside biot: sources, variables,
destinations and global variables.

Sources are where information can be fetched or received from, such as a remote URL, a file or
an external program. Sources are represented by URIs, with support for some extra sugaring
rules on the schemes. Biot will associate natural semantics to sources by default: if a polling
frequency is associated to a file, it will read the file block by block and consider this data as the
core piece of information; however, if no frequency is specified, the file is supposed to be a log
file (or similar) and the unit of growth will be lines, which will be the core unit of information to
extract from. Biot uses the scheme to detect the type of the remote source, it has support for
sources as various as HTTP (polling), WebSockets, XMPP, STOMP server, local files, external
processes, etc. All relevant protocols can be secured further using TLS.

Variables represent the unit of information to extract from the sources. Biot supports querying
received JSON structure to extract parts of the JSON tree, but more generic extraction types
using regular expression or free-form Tcl templates can also be used. In their most advanced

form, variables can spontaneously be created when particular information is spotted. Biot also
supports orphan variables, i.e. variables that are not bound to sources, but which values can
depend on the value(s) from variable(s) extracted from source(s). Among those orphan
variables, some are automatic variables and their values will always reflect the current date and
time. Typical use is for timestamping information that would not contain time data or for pulsing
to destinations at regular intervals. But the creation of variables that are not directly tighten to a
source also promotes support for aggregating source variables or performing complex
calculations on the sometimes simplistic data flows that originates from less capable sensors.

Destinations represent where to send the information, these are defined through a location (a
URL, a file or an external program, for example) but also an output template. The content of the
template will be filled using information about the sources, the variables, their value and which
variables were changed. Again, biot uses the scheme to detect the type of the destination, and
has support for a wide range of types, from local files and external processes, to remote HTTP,
websocket or STOMP servers, including TLS secured destinations.

" < 1S3y

i
JSON HTTP/S
HTTPIS > |r=--==-- : varz
|
L__f‘f’"_‘__; uors WS/S
WSIs > |——
RegExp Process
N ———
Freehand vard File
File
T,
Clock a5 STOMP

\ &
STOMP & var7

e
J

Input Extractors Variables Templater

The figure above summarises the data flows from the various types of sources to the currently
supported destinations as information travels within biot. Biot is also able to host a micro web

server, accepting REST operations to get and set the variables that have been declared or
spontaneously generated.

Finally biot also supports global variables, in addition to also supporting OS-level environment
variables. These global variables are typically used, together with environment variables, to
propagate settings across the definition of sources and destinations. For example, they could
contain a rootname used by several sources to find some information, or a common directory
under which to place several destination files. Global variables fit with how docker components
usually are parametrised and configured. While their naming is somewhat misleading, global
variables are not to be confused with the other variables that are at the core of the information
processing that occurs within biot.

5. Example and File Format

5.1. A Constructed Example

The following example would arrange to poll an external Internet service to detect your external
IPv4 address. There is no destination in this example, as it is only meant to exhibit the
domain-specific language that is used to tune biot's behaviour.

The following configuration snippet defines a source called whatismyip and associated to a
polling frequency of 120 seconds. Note the, here unnecessary, +get that forces an HTTP GET
operation and exemplifies the kind of sugaring that biot can use on URI schemes to refine
source behaviour. For example, the whole REST vocabulary is made available for HTTP
sources. The dashes are synonyms for empty strings, but these lines could be used to specify
headers to the request, data to send as a POST query or basic data source filtering.

whatismyip

http+get://whatismyip.org/

120

The following variable configuration snippet defines a variable called ip, bound to the source
whatismyaddr defined above. Since the variable is marked with the type RX, biot arranges to
update the variable with the content of the regular expression specified in the last line whenever
the IP address changes.
whatismyip.ip:
RX

((([21[5]1[e-51[([2][e-4][[1][@-9]|[0-9])?[6-91)\.){3})([2]1[5][e-5]|([
2][e-4]|[1][e-9]|[e-9])?[0-9])

5.2. File Format

The lists of sources, variables and descriptions can be described using a file format, but there
are also procedural constructs for their creation. The formats are based on groups of
consecutive lines. Blank lines and comments will be ignored, and so will all leading spaces. The
file formats are described here more as a more detailed introduction to the features offered by

biot.

5.2.1. Sources

Each source requires exactly 6 lines for its definition, and single dashes will be understood as
empty lines. These 6 lines are, respectively:

1.

The name of the source (only alphanumeric characters and dashes and underscores
allowed).

The location of the source, biot will match (glob-style) the location to find a proper plugin
for that type of source. There are currently plugins for http, file, exec, stomp, xmpp
and ws.

A list of headers containing keys and their values. This is only meaningful for some of
the source types, for example HTTP or STOMP sources, and can be used to specify API
keys or similar.

An initial request when accessing the source location, e.g. request data when the source
was specified as a http+post. When the first character of that line is a <, the initial
request will be the result of a templating operation instead.

A list of transform specifications to apply on every chunk of data acquired from the
source. The core of these transformations is a sed-like language, but there is also
support for encoding conversions.

A polling period, expressed in fractions of seconds. Biot tries to find good default
behaviour for most sources. For example, when file: is specified, if no polling is
specified, data will be got from the source line by line as the file grows, but if polling is
specified, the whole content will be sent for analysis each time.

5.2.2. Variables

Each variable requires exactly 3 lines for its definition, and single dashes will be understood as
empty lines. These 3 lines are, respectively:

1.

The specification of the variable. It is composed of the name of the source that the
variable is bound to (possibly empty), followed by a dot ., followed by the name of the
variable, possibly followed by a : and the initial value to set the variable to. Only
alphanumeric characters (including dash and underscores) are allowed for the variable
name. When the name starts with a <, this refers to a dynamic variable, meaning that the

matching and extraction operations (see below) will generate variables themselves.
While a detailed description is out of the scope of this document, the facility enables the
discovery of variables when the list of variables for a given source is not known in
advance.

The type of the variable, composed of a keyword, possibly followed by a dot and an
argument. The keyword is case insensitive and there are 4 types that are currently
implemented: RX for regular expression extraction, JSON for json selection and
extraction, TPL for generic templating and XPR for mathematical expressions (that will
use the content of other variables).

An extraction specification, which can be conceptualised as the argument to the
extraction and depends on the type. In the simplest form, this would be the regular
expression to apply on the text if the variable was of the RX type, the path to the template
for TPL variables, or the Xpath-like selection for JSON types. Complete details can be
found in the biot reference.

5.2.3. Destinations

Each destination requires exactly 4 lines for its definition, and single dashes will be understood
as empty lines. These 4 lines are, respectively:

1.

The specification of the destination, which commences with a name for the destination.
Only alphanumeric characters (including dash and underscores) are allowed. Following
that name might be a colon followed by glob-style patterns that will filter which variable
names are relevant for that destination, i.e. the variables which will have to be modified
to trigger the destination.

The location of the destination. As for sources, plugins register for types using glob-style
patterns on this location. There are currently plugins for exec, file, http, stomp,
syslog, tcp and ws.

The template to generate the payload from, most of the time this will be the specification
to a file. The template is run through a safe-Tcl interpreter where all the variables defined
in the previous section can be accessed.

A list of headers, this list should be an even long list with, in order, keys and their values.
This list will be mapped to headers whenever applicable, e.g. for http or ws
destinations. A typical example would be the specification of an API key or similar when
posting data to a remote cloud service.

Note that destinations will only be triggered whenever one of their specified variables has
changed and/or if the resulting payload has changed. Biot remembers payload data from one
variable detection to the next automatically to avoid duplicate sending. Destinations are also
triggered in the same order as their specification in the file.

6. Architectures using Biot

Biot has been or is being used in a number of data collection projects, most of them aiming at
energy savings for villas and condominiums in Sweden. Central to those projects are a number
of STOMP queues where data flows are represented using timestamped JSON objects on a
main topic. For some sources, additional temporary queues containing flows in another format
are used before being converted to the internal JSON format. A large number of biot-based
micro-services are instantiated in order to enqueue data, convert from temporary queues or
send data further for long time storage in time-series databases (KairosDB® and InfluxDB*),
graphing (using Grafana®), or real-time presentation for end-users (freeboard® through dweet).

The following figure shows the various possible connections between components within the
clusters. Docker components are all represented by parallelograms, and biot-based
components use a darker background. The exact instantiation of those components is
abstracted away from the figure to ease its understanding. In practice, each “installation”, e.g. a
block of flats, a villa, an office building, is mapped to as many components as required
depending on the devices on premises. All installations share a common database (and
common STOMP server® at present), a common web-based entry point, but all other
components are replicated at will to create a replicated architecture with few point of failures.
This architecture has proven to scale: there are for example 50 wireless M-bus temperature
sensors pushing data at short intervals, we receive electricity data from 200+ flats and the
biggest Yanzi-based installation uses a bit less than 2000 sensors.

3 KairosDB is a time-series database built on top of Cassandra. For complete documentation over KairosDB
and the protocols that it supports for data insertion and query, see: http://kairosdb.github.io/.

4 InfluxDB is another time-series database with clustering capabilities. InfluxDB has no external
dependencies to facilitate setup. More information is available at: https://influxdb.com/.

5 Grafana is a full-featured metrics dashboard interfacing a number of time-series database, including
KairosDB and InfluxDB. For more information, read at: https://influxdb.com/.

% freeboard.io enables the creation of real-time dashboards to highlight current (and historical) key values for
things. Its APl interfaces directly dweet.io.

7 dweet.io implements an API (and short term storage) for loT-oriented message passing.

8 The efrecon/stomp docker component implements a simple STOMP server with no persistence or
load-balancing. It is based on the Tcl STOMP library [22].

http://kairosdb.github.io/
https://influxdb.com/
https://influxdb.com/

o OO
Wireless R SQSQ}NQ
o9 Co” 0 o !

o2 s (B |
HS proxy
o0

I e M sy
[aimg [~ o]

Yanzi Cloud

CATUS

d
i
¥ a [4]
5
t

fraeboard.io
Cloud

A variety of sources can be involved. A Tcl-based micro web server®, protected by an NGINX
reverse proxy receives data securely from devices that are HTTP(S) capable (heat pumps,
wireless M-Bus sensors via gateway from six innovation'®, M-bus meter coupled to Elvaco™’
gateways, etc.). Electricity data from the condominiums is polled at regular intervals through a
biot-component, using a proprietary APl. Some heat pumps send their data using XMPP, while
websockets connections are used to collect data from Yanzi'>-powered IPv6 networks of
sensors and actuators.

® The efrecon/htsomp docker component offers a flexible framework to implement a web-based entry point
for external services and devices that are able to push data. Messages can be converted on reception and
automatically pushed to STOMP queues. The code for the component is available as a Tcl project on github
at https://github.com/efrecon/htstomp.

1% Six Innovation is a small partner company, more information at http://www.six-innovation.com/.

" The Elvaco CMe Series are gateways capable of capturing MBus messages and sends these to remote
Internet resources. See http://www.elvaco.com/en/products/cme-series for more information.

2 Yanzi is a partner company selling a number of IPv6-based sensors and actuators.

https://github.com/efrecon/htstomp
http://www.six-innovation.com/
http://www.elvaco.com/en/products/cme-series

The clusters are built and administrated using machinery'®, a Docker meta orchestration tool
written in Tcl. Typically, the clusters will host a number of backend components on a number of
pre-defined virtual machines for services such as the STOMP queues or the databases. A
scalable number of worker virtual machines will host the components that are dedicated to
on-premises installations. Components on these machines are spread out and orchestrated
using Docker Swarm. A prototype cluster is built on top of virtual machines based on Oracle
VirtualBox, while a production-oriented cluster runs on top of Microsoft Azure. For most of the
data sources and site installations, but also internally and towards a large number of the
external services, biot will mutate to adapt to the protocols in use or the data formats required
by the various APls. Each biot instance dynamically gets its configuration when it starts up from
a cluster-internal etcd key-store.

In these architectures, all Tcl-based components have their roots in a minimal docker Tcl
component™, itself built on top of Alpine Linux. This enables quicker deployments, for example
when new components need to be started to better balance application load. For example, the
biot distribution contains tools to create a minimal Docker image that only is 23Mb.

7. Future Work

Biot is able to acquire its configuration not only from local files and the command-line, but also
from remote locations such as web servers or an etcd keystore'. While this covers a number of
scenarios, and especially the use of biot in CoreOS-based clusters, there are other competing
technologies for the scalable storage of cluster-confined data and configuration. One
widespread candidate is consul’®, which offers an API following similar principles to the one for
etcd.

Biot still lacks supports for a number of widespread loT protocols. While it is possible to support
them using external command-line tools, implementing these would provide for more flexibility
and less overhead. Possible candidates are proper support for the various XEPs, including the
proposed publish/subscribe specifications, and for MQTT. Similarly, as message queues are
essential to how modern web applications are created, supporting other protocols than STOMP

' machinery tries to be the missing piece at the top of the Docker pyramid. machinery is a command-line
tool that integrates Machine, Swarm, Compose and Docker itself to manage the lifecycle of entire clusters.
machinery combines a specifically crafted YAML file format with compose-compatible files to provide an
at-a-glance view of whole clusters and all of their components. More information at
https://github.com/efrecon/machinery.

' The efrecon/mini-tcl is a minimal batteries-included Tcl installation based on the standard Alpine
Linux component. This enables to keep it size down while still providing a wide range of Tcl packages. It is
available directly from the docker hub, but also from its github project at https://github.com/efrecon/mini-tcl.
'® Support for etcd keystores is achieved through an implementation of the etcd v 2.0 APl in Tcl. This
implementation is available separately at https://github.com/efrecon/etcd-tcl.

'8 Consul is another fault-tolerant key-value store, more information at https://www.consul.io/.

https://github.com/efrecon/machinery
https://github.com/efrecon/mini-tcl
https://github.com/efrecon/etcd-tcl
https://www.consul.io/

should also be considered. For example, beanstalkd offers a clear-text simple protocol for the
scheduling and consumption of jobs.

There are a wide number of external services that offer an HTTP-based API that is compatible
with biot, and biot itself has been tested against a number of these services. Out of all the
existing services, mashape stands out through providing an API that aims at integrating other
APIs. Testing support for mashape would open up biot to an increasing number of web-based
services.

Configuring larger biot projects can lead to the creation of many files, since biot usually offers an
increased flexibility when using templates. The provision of a graphical editor, perhaps based on
dataflows in a manner similar to what NodeRED offers, would be of great benefit and would
allow developers to better benefit from the minimal rule-based system that it implements.

8. Conclusion

Biot is a flexible tool to shuffle and transform data from any source to any destination in modern
cloud architectures. Aside the Internet of Things, biot can also be used in other contexts where
real-time data mashup pipelines are necessary. Biot benefits from a number of Tcl-specific
features, such as its fast regular expression implementation or its flexibility when mixing code
and data in output templates. Tcl is sometimes considered as a glue language between
heterogeneous software components. Biot shows that Tcl’s glueing capacity also applies to the
cloud and that it can be used to participate to the building of the complex architectures behind
modern web applications.

9. References

[1 “ZigBee 3.0: The Foundation for the Internet of Things”, available at
http://www.zigbee.org/zigbee-for-developers/zigbee3-0/.

[2] “G.9959 : Short range narrow-band digital radiocommunication transceivers - PHY, MAC,
SAR and LLC layer specifications”, ITU-T Recommendation, 2015.

[8] “Bluetooth Smart Technology: Powering the Internet of Things”, available at
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx.

[4] “Transmission of IPv6 Packets over IEEE 802.15.4 Networks”, G. Montenegro, N.
Kushalnagar, J. Hui, D. Culler, IEEE RFC 4944, 2007.

[5] “Hypertext Transfer Protocol -- HTTP/1.1%, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, IEEE RFC 2616, 1999.

[6] “The Constrained Application Protocol (COAP)”, Z. Shelby, K. Hartke, C. Bormann, IEEE
RFC 7252, 2014.

[7] “The WebSocket Protocol’, |. Fette, A. Melnikov, IEEE RFC 6455, 2011.

http://www.zigbee.org/zigbee-for-developers/zigbee3-0/
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx

[8]
[9]
[10]

[11]
[12]

[13]
[14]

[15]

[16]
[17]

[18]
[19]
[20]

[21]
[22]

“‘“MQTT Version 3.1.1”, A. Banks, R. Gupta (eds.), OASIS Standard, 2014, available at:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-0s.html.

“XEP-0323: Internet of Things - Sensor Data”, P. Waher, Experimental XMPP Extension
Protocol, 2015, available at: http://xmpp.org/extensions/xep-0323.html.

“OMA Lightweight M2M’, OMA Specification, 2015, available at:
http://openmobilealliance.hs-sites.com/lightweight-m2m-specification-from-oma.

“Web of Things”, Wikipedia, available at: https://en.wikipedia.org/wiki/\Web_of Things.
“AllJoyn Framework Architecture”, AllSeen Alliance, available at:
https://allseenalliance.org/developers/learn/architecture.

“The JSON Data Interchange Format’, ECMA standard 404, 2013.

“Extensible Markup Language (XML) 1.0 (Fifth Edition)”, T. Bray, J. Paoli, C.M.
Sperberg-McQueen, E. Maler, F. Yergeau, W3C Recommendation, 2008.
“Node-RED Documentation”, available at: http://nodered.org/docs/

“IOT-DSA”, available at http://iot-dsa.org/how-it-works.

“The Safe-Tcl Security Moderl, J. Levy, L. Demailly, J. Ousterhout, B. Welch,
Proceedings of the USENIX Annual Technical Conference (NO 98), New Orleans,
Louisiana, 1998.

“Documentation - etcd”, available at: https://coreos.com/docs/etcd/.

“Architectural Styles and the Design of Network-based Software Architectures”, R.
Fielding. Doctoral dissertation, University of California, Irvine, 2000.

“STOMP Protocol Specification, Version 1.2°, available at:
https://stomp.qgithub.io/stomp-specification-1.2.html.

“The syslog protocol’, R. Gerhards, IEEE RFC 5424, 2009.

“Web(-like) Protocols for the Internet of Things”, E. Frécon, Proceedings of the 20'th
Tcl/Tk Conference, 2013.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://xmpp.org/extensions/xep-0323.html
http://openmobilealliance.hs-sites.com/lightweight-m2m-specification-from-oma
https://en.wikipedia.org/wiki/Web_of_Things
https://allseenalliance.org/developers/learn/architecture
http://nodered.org/docs/
http://iot-dsa.org/how-it-works
https://coreos.com/docs/etcd/
https://stomp.github.io/stomp-specification-1.2.html

