Supporting Tcl in Hardware

Scott Thibault

thibault@gmuhdl.com
Green Mountain Computing Systems, Inc.
P.O. Box 275
Richmond, VT 05477

Abstract

The use of high-level languages is known to increase
both productivity and software quality, yet assembly
language is still popular in the domain of embedded sys-
tems. We present a rational for the use of Tcl in embed-
ded systems and for a hardware implementation of Tcl.
We describe Tcl on Board!”™, an embedded systems
platform based on a Tcl processor. Key components
of the Tcl hardware design are presented along with
the limitations imposed on the language. An example
Web server application is described that demonstrates
reasonable performance and a very small memory foot-
print.

1 Introduction

One of the greatest pressures we face in the embedded
systems market is to reduce the product development
cycle, i.e. shorten time-to-market. While in the past,
hardware development has been the dominating factor
in the development cycle, software development is in-
creasingly becoming the bottleneck in system design.
One of the best approaches to reducing software devel-
opment time is the use of high-level languages. In this
paper, we explore the implementation of an embedded
processor for Tcl that gives embedded system program-
mers access to the benefits of a high-level scripting lan-
guage without sacrificing memory or performance.

The advantages of using scripting languages for PC ap-
plications has been well demonstrated, and their use is
widespread. Likewise, there are a number of benefits
of using a scripting language, and Tcl in particular, for
embedded systems. These include:

high-level constructs shorten development time,

e the lack of pointers reduces errors,

e automatic memory management reduces errors,

e simple network support shortens development time,
e simple syntax is easy to learn, and

e cross-platform support permits reuse.

Relative to other popular scripting languages, Tcl has
some advantages for embedded systems. First, Tcl has
the simplest syntax making it very easy to learn. Sec-
ond, Tcl supports reference-counting memory manage-
ment as opposed to garbage collection. Garbage collec-
tion can be problematic in embedded systems because it
exhibits unpredictable timing. Third, Tcl supports easy
to use TCP/IP support and extensive string handling
capabilities. This is especially desirable in embedded
systems with wireless capabilities (e.g., Bluetooth tech-
nology) or distributed processors. These systems com-
municate with other devices and/or the user through
PDAs or other remote interfaces. The simplicity of cre-
ating network servers and processing strings in Tcl make
it an ideal choicel.

The next section discusses the decision to implement
Tcl in hardware rather than porting the standard inter-
preter to existing embedded processors, or developing a
Tcl compiler. The architecture of the processor is de-
scribed in section 3. Section 4 discusses the compiler
and the implications of our approach on language sup-
port. The results of this work are presented in section
5 followed by some conclusions in section 6, and future
directions in section 7.

Many TCP/IP protocols are based on exchanging command
strings.

)
QO
é Compiler Hardware
S
E Interpreter
>
Code density

Figure 1: Implementation strategy tradeoff.

2 Motivation

Given that we desire to use a high-level language to im-
prove productivity and code quality, how do we imple-
ment that language? There are three major methods
of implementation to consider: interpretation, native
compilation, or hardware implementation. The correct
choice depends on the target application.

When considering the high-performance computing
market, implementation in hardware does not make
sense. That is because it is easy to compile a language
to a general-purpose processor and achieve high per-
formance due to the amount of effort expended in op-
timizing these processors. However, when we consider
the embedded systems market, this argument no longer
holds.

The embedded systems market is dominated by 8-bit
and 16-bit processors that are not generally designed
for high performance. Additionally, these systems are
constrained by memory limitations such that code size
becomes an important factor. For this reason, we find
that assembly language is still widely used in this do-
main. Figure 1 illustrates the tradeoff involved when
considering both performance and code density (é.e., the
compactness of a program’s representation). The hard-
ware implementation is the only choice that can achieve
small programs and good performance.

The problem of code size in the compilation approach
is clear to see for a dynamic language like Tcl. Con-
sider a simple command such as expr $a+1. Using the
compiler approach, code must be generated to load the
variable a, verify that it has a value (i.e., not unset),
check the type of the value and call a conversion func-

tion if necessary, and check for/invoke any traces on
the variable. In contrast, a single instruction could be
designed to perform all these tasks using the hardware
approach.

A number of processors have been developed for specific
languages including LISP [7], Forth [1], and even Java
[3]. While Java has some of the features of Tcl (e.g.,
automatic memory management), it is not as high level
as Tcl, requires garbage collection, and the hardware
implementations target the high-end processor market
(i.e., 32 bit). The other languages that have hardware
implementations are not comparable in terms of ease-
of-use, networking, and/or popularity.

3 Hardware Implementation

Having narrowed the implementation strategy down to
a hardware implementation, there are still various hard-
ware approaches to consider. The first approach would
be to implement a pure Tcl interpreter in hardware that
loads command strings, parses, and executes them. This
approach would be very costly in both chip size and
complexity. At the other end of the spectrum, an ex-
isting processor could be modified with special instruc-
tions that would make it a better target for compilation.
This approach can improve both performance and code
size. A third approach is to design an instruction set
specifically for Tcl that can be easily executed in hard-
ware. Although this approach has higher start-up costs
(i.e., processor design) than modifying an existing pro-
cessor, it provides the highest code density. Due to the
memory limitations imposed by embedded systems, our
implementation takes this third approach.

3.1 Instruction Set

The instruction set is designed using a simple stack-
based architecture. Thus, the basic instruction set in-
cludes instructions to push and pop values, and arith-
metic instructions that take operands from the stack
and push the result. This architecture was chosen for
simplicity and compactness?. However, the same prin-
ciples used to support Tcl here would also apply to a
register-based architecture.

The principle goal of the instruction set design is to
eliminate the performance and code-size overhead re-

2Stack architectures are known to have higher code densities
than register-based architectures.

list23:
Vaue »| Vaue 2
suing | [sting —to
Vaue 3
[sting —to
ng g

Figure 2: Example representation of the list 2 3
with dual-ported objects.

quired to implement the high-level features of Tcl such
as automatic memory management, dynamic typing,
and list manipulation. The following sections describe
how each of these features is addressed.

3.1.1 Dynamic Typing

The semantics of Tcl are defined in terms of strings.
For efficiency, Tcl implementations, including the stan-
dard Tcl interpreter, must use other representations in-
ternally for storage. It would be unreasonable, for ex-
ample, to evaluate expressions using only strings. The
consequence is that dynamic typing is required.

In a similar manner as the Tcl interpreter, we represent
values using dual-ported objects. That is, objects may
store one internal representation and/or a string repre-
sentation. Three internal representations are supported:
integer, list, and array. Each object also carries a type
that describes the internal representation, or an empty
flag to indicate that the internal representation is not
in use. The string representation is stored as a pointer,
and may be NULL to indicate that the string represen-
tation is not available. Figure 2 shows an example of
how the list 2 3 might be represented in memory with
dual-ported objects. This list has both a structural rep-
resentation for quick access to the individual elements
2 and 3, as well as a string representation that could be
used with puts or some other string operation.

Operators calculate only the most convenient represen-
tation, and alternative representations are calculated
only as they are needed. For example, the string
range command will return an object with only a string
representation, and the expr command will return an
object with only an integer internal representation. If

the string range command were used as an operand
of the expr command, then the string result would be
converted to an integer during evaluation of the expr
command.

We implement dynamic typing in hardware with zero
overhead using hardware trapping and special typed
push instructions. For example, operations of the expr
command are pushed on the stack using the pushInt
instruction. During execution of a pushInt instruction,
the type of the loaded object is verified to be an integer
and a hardware trap is signaled otherwise. The hard-
ware trap invokes a conversion routine that will create
an integer representation of the object. The trapping
logic operates in parallel to the normal push operation.

3.1.2 Memory Management

Automatic memory management is an important fea-
ture of Tcl that increases both programmer productivity
and quality. Unlike other languages, Tcl relies on refer-
ence counting for automatic memory management. The
benefit of reference counting is that memory is freed as
soon as it becomes available in a predictable way. This
can be very important in an embedded system.

The standard Tcl interpreter allocates all objects from
the heap, and maintains a stack of pointers to heap
allocated objects. Using this approach, every operation
requires an extra memory read to dereference the object
pointers in the stack. To eliminate this extra read, our
approach stores objects on the stack.

This choice has an important impact on memory man-
agement. If copies of objects are stored on the stack,
then objects cannot be reference counted. The reason
being that objects contain pointers to other objects (in
the case of lists and arrays) and/or strings. When a
heap-allocated object’s reference count reaches zero, the
object is no longer needed, but there is no way to know
if there is a copy of the object on the stack somewhere
that requires access to the object’s string or list/array
pointers.

The solution is to move the reference counts to the
strings, lists, and arrays. When objects are copied, the
reference counts of any strings, lists, or arrays pointed
to by the object are incremented. Reference counts are
decremented likewise when the object is destroyed. Fig-
ure 3 illustrates the difference between our implementa-
tion and the implementation used by the Tcl interpreter.

Stack Heap

ptr. —7 Count: 2
. A [ob
\>
"Hello
World!"
a)

Stack Heap

Obj.

"Hello
World!"

Obj. /

b)

Figure 3: Reference counting example using a) the standard Tcl implementation versus b) our im-

plementation.

Reference counting is implemented in hardware using
special instructions. A single instruction examines the
type of an object and reads, updates, and writes the
object’s reference count, if necessary. If the result of
the update reduces the count to zero, a hardware trap
is generated. The trap invokes a routine to perform
deallocation.

For example, to load a global variable, the following
instructions might be generated:

loadGlobal2 33577
pushObj

incObjRef
incStrRef

The incObjRef and incStrRef instructions in this ex-
ample cause the reference counts of any referenced ob-
jects (lists/arrays or strings respectively) to be incre-
mented. Although the overhead has been greatly re-
duced, it would better to eliminate the overhead alto-
gether if possible. For example, if the type of the object
is known to always be an integer then these two in-
structions can be eliminated. Through type analysis,
the compiler can determine the type of objects in many
cases and significantly improve code density by elimi-
nated unnecessary reference counting instructions.

3.1.8 List Manipulation

Since Tcl does not provide user defined types, lists are
an essential part of the language. In our implemen-
tation, arrays (the only other complex data structure
available in Tcl) are also implemented with lists. Con-
sequently, the performance of list manipulation is very

important.

Lists are represented internally by a linked list of arrays.
An array based representation allows constant-time ac-
cess to list elements. Using a linked list of arrays rather
than a single array helps reduce the time required to
perform append operations. Append is implemented
by re-sizing the array (which may require copying the
whole array) unless the array is large, in which case, a
new array would be appended to the linked list.

To maximize list performance, a special purpose instruc-
tion is used to access list elements. This instruction
inspects only the first array in the list of arrays to com-
pute the address of the list element or signal a trap if
the index is out-of-bounds. The trap handler is respon-
sible for traversing the list of arrays to locate elements
beyond the first array. A single array in the linked list
will be re-sized up to 4095 elements before a new array
node is added to the list. Thus, for most list accesses,
a single instruction performs bounds checking and ad-
dress calculation.

3.2 Runtime system

The instruction set provides only the necessary primi-
tives to implement the core Tcl commands in an efficient
manner. Some of the core commands are implemented
by the compiler (i.e., translated into a series of instruc-
tions). The commands implemented by the compiler
include set, if, while, foreach, for, switch, catch,
error, expr, incr, return, break, and continue. The
remaining commands are implemented in a runtime li-
brary.

Unlike most processors, the Tcl processor does not have

| Application |

A A

\ 4
|Devi ce Drivers |
A A

A

Core Tc
Commands

Privileged
Commands

Figure 4: Three tiers of programmability.

an assembler for instruction-level programming. The
reason being that the processor is so specialized to Tcl
programs that it does not make sense to program in any-
thing else. Thus, the runtime library is written entirely
in Tcl.

Operating System (OS) code does, however, required ac-
cess to certain hardware features such as direct memory
access. These features are exposed through the compiler
as built-in commands. These low-level commands, to-
gether with standard Tcl, are used to implement mem-
ory management and the numerous trap handlers de-
scribed in the previous sections.

In order to support the varying needs of OS code, device
driver code, and application code, we define 3 tiers of
programmability corresponding to these three levels of
code as shown in figure 4. In the OS tier, program
code has direct access to memory via pointers and may
not be memory safe. For example, the string length
command can be implemented by the following code:

derefWordPtr [expr [getStr $str] + 1]

The getStr command extracts from the dual-ported
str object a pointer to the object’s string representa-
tion. The derefWordPtr is then used to directly read
the given address (i.e., the second word of the string
where the length is stored).

In the device driver tier, programs do not have direct
access to memory, but do require the ability to man-
age buffers and perform I/O operations with devices.
For performance reasons, device drivers must be able
to read and write buffers. This is accomplished by of-
fering read and write operations on strings. Figure 5
shows an example procedure taken from the TCP/IP

proc ip_fill_header {header dst_hi \
dst_lo proto} {
global ip_id
global ip_addr0
global ip_addril
global ip_addr2
global ip_addr3

swrite header 0 69

incr ip_id

swrite_word_big header 4 $ip_id
swrite header 6 64

swrite header 8 64

swrite header 9 $proto

swrite header 12 $ip_addr0
swrite header 13 $ip_addri
swrite header 14 $ip_addr2
swrite header 15 $ip_addr3
swrite_word_big header 16 $dst_hi

swrite_word_big header 18 $dst_lo

Figure 5: Example TCP/IP driver code.

driver. This procedure fills in the IP header portion of
an IP packet using the swrite and swrite word big
commands. These OS commands perform destructive
writes on strings in a memory safe way (i.e., the string
is automatically expanded if the destination is out-of-
bounds). Although memory safe, the swrite commands
require careful programming because the string is de-
structively updated, not copied. Bytes and words can
be directly read from strings with sread commands.
Standard Tcl should support an efficient method of ac-
cessing string data via the binary command, but that
is not the case currently.

Finally, in the application tier, program code can only
use the standard core Tcl commands. These three tiers
of programmability are enforced by the compiler. A
compiler option is required to access commands in the
device driver tier, and the OS tier is not available to
end-users.

4 Language Limitations

As shown in the previous section, the most important
features of Tcl (dynamic typing, automatic memory
management, and complex data types) can all be im-
plemented efficiently in hardware. There are a number

of language features, however, that are troublesome in
terms of performance and memory constraints. These
difficulties are not specific to the hardware approach,
but due to the need to compile. There are several pa-
pers that discuss the issues of compiling Tcl [4, 2, 5, 6].
The follow sections summarize some of the main issues.

4.1 Type Analysis

Much of the overhead involved in manipulating Tcl ob-
jects can be avoided if the type of the object (i.e., inte-
ger, list, string, ...) is known. As discussed in section
3.1.2, for example, reference counting instructions can
be completely eliminated if the type of the object is
guaranteed to be an integer. It is therefore important
to be able to determine the types of as many variables
as possible at compile time using type analysis.

There are several Tcl features that make this type anal-
ysis difficult. First, a variable name can be computed
at runtime. For example, after the command set $a 1,
the compiler cannot assume anything about any variable
types. We do not support runtime computed variable
names. This is a reasonable limitation since the same
effect can be achieved using arrays.

Second, the trace command eliminates almost all pos-
sibility of determining variable types because the trace
command can modify local variables in the context of
the traced operation. The trace command is not cur-
rently supported, and would be difficult to implement
without changing its semantics. Since procedures can
access variables with the upvar command, there is no
real reason that the trace command should be evaluated
in the context of the traced operation, but those are the
current semantics of Tcl.

Third, the uplevel command can also severely inhibit
the ability to perform type analysis. The uplevel com-
mand is also not supported. However, the upvar com-
mand can be used to achieve the same results. The
upvar command is supported in the limited case that
the first argument is a variable access, and that variable
is a parameter of the command. With this limitation,
analysis of the effects of upvar can be performed at
compile time.

Finally, command names can be computed at runtime
as in [$callback $al. Since the command being in-
voked is not known at compile time, there is no way
to determine what side effects the command will have.
Therefore, the compiler will not be able to assume any-

thing about variable types after the call. We overcome
this issue by not permitting commands with side effects
to be invoked in this manner. Additionally, the current
implementation does not include symbol table informa-
tion in the program. A special command must be used
to create a function pointer variable, which stores the
command’s address as calculated at compile time. This
was a temporary “hack” that will be eliminated in the
next version. The rename command is also unsupported
because it prevents commands from being invoked di-
rectly by address.

4.2 Dynamic Evaluation

Of course, eval cannot be implemented without a run-
time compiler or interpreter. While this is certainly
possible, it would likely have an adverse effect on mem-
ory requirements. For the same reason, commands that
accept scripts as arguments must have constant argu-
ments (i.e., catch, for, foreach, if, proc, switch, and
while). If dynamic evaluation is supported, it would
also degrade the ability to perform type analysis, as de-
scribed in the previous section, due to indeterminable
side effects.

4.3 Miscellaneous Limitations

This section lists the commands that are not particu-
larly difficult to implement, but have not yet been im-
plemented or do not make sense in the given context.
The processor does not have a clock at this point, so the
after, clock, and time commands are unavailable. MS
Windows specific commands are not available. These
commands are dde, registry, and resource.

The system does not support any file systems at this
time. Consequently, the commands cd, eof, exec, file,
fcopy, glob, load, msgcat, open, pwd, seek, and tell
are unimplemented. TCP sockets, however, are sup-
ported along with the necessary commands for opening,
reading, writing and closing sockets.

Unicode is not supported in this version, and thus
encoding is not implemented. The exit, history,
interp, memory, and pid commands have no useful
meaning in our context and are unimplemented.

Namespaces are not currently supported, but will likely
be supported in future releases. This includes the com-
mands namespace, package, and variable.

64K RAM 64K FLASH
bj ect 1 Heap
Stack Space Code
yy y yy
‘ A '
i | Stack E
E Cache UART '
. A A E
‘ v v 4 v '
CcPU
T U RPA

(Spartan Ile)

Figure 6: Prototype configuration.

Finally, the bgerror, fblocked, flush, regexp,
regsub, subst, unknown, and vwait commands are
unimplemented due to lack of time. All these commands
can be implemented and regular expressions have a high
priority.

5 Results

We have implemented a working prototype of our Tcl
on Board! ™™ platform. The platform includes a com-
piler, an instruction-set simulator, various debuggers,
runtime libraries and a 16-bit Tcl processor. The fol-
lowing sections describe the prototype implementation
and a demonstration Web server application developed
for the prototype.

5.1 Prototype Implementation

The configuration of the prototype is illustrated in fig-
ure 6. The processor is implemented in VHDL, a hard-
ware description language, and can be realized in any
hardware form. A prototype processor has been im-
plemented in programmable logic on a Xilinx Spartan
ITe development board. The Tcl processor, including a
stack cache but excluding the UART, is approximately
32k logic gates. This size is within the normal range of

sizes associated with 16-bit processors as well as Java
processors.

The processor operates at 5 MHz on the FPGA, al-
though it is capable of operating up to speeds of 36
MHz3. This figure is also comparable to common 8-bit
and 16-bit processors. On average, instructions require
3.5 cycles to execute, yielding approximately 10 MIPS
at 36 MHz. Of course, a VLSI implementation would
be capable of much higher performance.

The 16-bit Tcl processor has an address space of 128k
bytes. The prototype has 64k bytes of flash memory for
program code, and 64k bytes of RAM for stack, global
variable, and heap space.

The runtime libraries currently include the operating
system and core Tcl commands, a networking library
implementing PPP and TCP/IP, and a serial device
driver. The total sizes of these libraries are 38k bytes,
12k bytes, and 1k bytes respectively. The compiler sup-
ports function-level linking, which means these sizes do
not necessarily reflect the size of complete programs.
The instruction set achieves good code density that is
about the same as the code density of using C without
compiler optimizations.

5.2 Web Server Application

To demonstrate the Tcl on Board! ™ platform, we have

built a small Web server application. The Web server
is about one page of Tcl code (see Appendix A), and
implements a simple interface to a hypothetical multi-
zone climate control system. The server accepts HTTP
requests over a serial port using PPP in order to retrieve
and modify the temperature settings for each zone and
time of day. Any standard Web browser can be used to
communicate with the embedded server.

Using the 5 MHz prototype with a 9600 baud serial con-
nection to the on-board UART, an HTTP request takes
5.25 seconds to complete. 4.71 of those 5.25 seconds is
consumed by communication over the serial line. We
estimate that a 32 MHz version with a 56k serial port
could handle requests in less than a second. The total
program size (including all libraries) is just 32k bytes.

3The 5 MHz speed is used due to limitations of the flash mem-
ory.

6 Conclusion

We have designed and implemented a working embed-
ded systems platform for the Tcl language based on
a Tcl processor. In this paper, we have presented an
overview of the design including the major hardware op-
timizations and limitations of the platform. Although
the Tcl processor provides the simplicity, productivity,
and robustness of a high-level scripting language, the
presented results demonstrate that the Tcl processor
is similar in performance and size to other embedded
processors. These results are achieved through a com-
bination of an optimized Tcl instruction set, compiler
optimizations such as type analysis, and novel hardware
constructs like hardware reference counting.

The platform is further demonstrated with a working
Web server example. The Web server example has a
modest footprint of 32k bytes, and operates within an
acceptable amount of time for an embedded device. The
example also demonstrates the power of Tcl with an
implementation requiring only a single page of code.

7 Future Work

The next two immediate objectives for the Tcl on Board!
platform are to complete the runtime libraries, and be-
gin optimizing performance and code density. Most no-
tably, the runtime libraries lack support for regular ex-
pressions, which will be important for embedded system
applications.

There are a number of ways to optimize the platform
that have already become obvious. First, the type anal-
ysis performed by the compiler can be improved to be
able to determine more variable types. For example, the
compiler currently makes no attempt to determine the
type of procedure parameters. Through global program
analysis, it would be possible to determine the types
of parameters and optimize the procedure body. Sec-
ond, the compiler could be augmented with directives
that would allow the developer to directly specify a vari-
able’s type. We envision that these directives would be
used by the OS developers and not by application devel-
opers, as this would reduce the productivity advantage
of using a scripting language. Finally, the instruction
set can be optimized to increase code density by iden-
tifying common instruction patterns and implementing
them in a single instruction.

A long term direction might be to investigate the pos-

sibility of a 32-bit implementation. A 32-bit version
would significantly reduce memory I/0O. The purpose
would not be to compete with other 32-bit processors,
but we expect a 32-bit version might be able to compete
in the 16-bit market.

References

[1] John Hayes and Susan Lee, “The architecture of the
SC32 Forth engine”, Journal of Forth Application
and Research, v5 n4, 1989.

[2] Brian T. Lewis, “An On-the-fly Bytecode Compiler
of Tcl”, Proceedings of the 1996 Tcl/ Tk Workshop,
Monterey, July 1996.

[3] Harlan McGhan and Mike O’Connor, “PicoJava: A
Direct Exection Engine for Java Bytecode”, IEEE
Computer, pp. 22-30, October 1998.

[4] Forest Rouse and Wayne Christopher, “A Typing
System for an Optimizing Multiple-Backend Tcl
Compiler”, Proceedings of the 1997 Tcl/Tk Work-
shop, Boston, July 1997.

[5] Forest Rouse and Wayne Christopher. “A Tcl To C
Compiler”, Proceedings of the 1995 Tcl/Tk Work-
shop, Toronto, July 1995.

[6] Adam Sah and Jon Blow, “TC: A Compiler for
the Tcl Language”, Proceedings of the 1993 Tcl/Tk
Workshop, June 1993.

[7] Guy Steele and Richard Gabriel, “The evolution of
Lisp”, History of Programming Languages, pages
933-309, ACM Press, 1996.

A Web Server Example

proc update_zone {zone no assign} {

}

set pos [expr [string first "=" $assign] + 1]
set val [string range $assign $pos end]
write_reg [expr ($zone << 1) + $no - 2] $val

proc zonehtml {zone no} {

}

set data [read_reg [expr ($zone << 1) + $no - 21]

set hour24 [expr ($data >> 10) & 31]
if {$hour24 > 123} {
set hourl2 [expr $hour24 - 12]
} else {
set hourl2 $hour24
}
set quarter [expr ($data >> 8) & 3]
set min [expr ($quarter << 4) - $quarter]
set temp [expr $data & 255]
if {$hour24 == 24 || $hour24 < 12} {
set ret [format "<TD>/d @ %d:%02d am</TD>" $temp $hourl2 $min]
} else {
set ret [format "<TD>)d @ %d:%02d pm</TD>" $temp $hourl2 $min]
}

return $ret

proc www_req {handle} {

}

set req [split [gets $handle] " 7+"]

set loc [lindex $req 1]

puts $handle "<HTML><BODY>"

switch $loc {

/current {

puts $handle "<TABLE border=5><TR><TD>Zone 1</TD><TD>Zone 2</TD></TR>"
puts $handle [join [list "<TR>" [zonehtml 1 0] [zonehtml 2 0] "</TR>"]]
puts $handle [join [list "<TR>" [zonehtml 1 1] [zonehtml 2 1] "</TR>"]1]
puts $handle "</TABLE>"

}

/update {
update_zone 1 0 [lindex $req 2]
update_zone 1 1 [lindex $req 3]
update_zone 2 0 [lindex $req 4]
update_zone 2 1 [lindex $req 5]
puts $handle "Request completed."

}

}
puts $handle "</BODY></HTML>"
close $handle

proc accept {handle ip port} {

}

fileevent $handle readable [mk_cmd www_req $handle]

proc main {} {

ppp-attach [init_dev] [list 192 168 0 25]
socket -server accept 80

while {1} {
update
}

