
The Suitability of Tcl/Tk for Remote System Management
Dan Razzell

Starfish Systems
dan@starfishsystems.ca

Abstract

Starfish is a managed agent method for securely administering
groups of computer systems. Because of the privilege necessary
for the effective use of such a tool, its design demands careful
attention to issues of security and clarity. It might not seem that
an open, extensible scripting language such as Tcl/Tk would be
suitable for such rigorous use, but on the contrary it has proven
to be a nearly ideal choice of implementation language.

In this paper we will examine the general conditions for secure
system management, and also look at some of the specific
language features of Tcl/Tk which lend themselves to this class
of activity. Throughout, we will try to convey some sense of the
way in which open system architectures promote security and
integration even, or especially, in heterogenous environments.

1. Introduction

Starfish is a method for securely administering groups of
computer systems. It can be described in terms of three
principal components: a secure channel for passing expressions
and results remotely, lightweight agents which evaluate those
expressions on remote systems, and a manager, placed
somewhere on the network, which issues expressions to groups
of agents and acts on their results. The agents and the manager
are implemented as communicating Tcl interpreters. Each
therefore supports a complete programming environment, and so
each can be readily extended to meet site requirements.
Integration is seamless because Tcl is used not only for
implementation but also as the language for expressing remote
control.1

2. Background

Computer systems which interact over a network behave as a
virtual machine [45] having its own significant properties. The
systems themselves may range from sharing no organizational
relationship at all (for example, surfing the web) to being
elaborately organized and managed under a common policy (for
example, industrial process control.) Furthermore, the
capabilities of these systems, and their degree of coupling, vary
with changing requirements. The systems tend to develop
increasingly complex patterns of affinity which are dynamic,
overlapping, and not necessarily well behaved.

Any useful model of system management consequently has to
account for a diverse range of virtual machines, for evolving
capabilities, and for unforeseen behaviors. System management
as a discipline is primarily concerned with how all of this
diversity can be functionally integrated and made secure. In

1 The Lisp Machine [18] was a more ambitious effort to unify
the interactive environment with the implementation
language, reaching all the way to the level of processor
instruction set.

practice, it provides the expertise for infrastructure design and
strategic planning. as well as conducting the ongoing
transformation of the component systems which make up a
given virtual machine.

In terms of transformation, its techniques fall into two broad
categories according to the phase at which they are applied:
those used to initially install systems and those used to maintain
them. The distinction arises because each type of operating
system conventionally (and rather jealously) provides a
specialized installation mechanism [20][41][42] which is
unsuited to other systems [2]. As we have little influence over
these mechanisms, they have no further place in our present
discussion. Instead, our primary focus will be the maintenance
phase, where we are free to develop our own policies and
mechanisms, and to apply them to our own heterogenous groups
of systems.

A number of different techniques for incremental maintenance
are commonly encountered in system management. At one end
of the spectrum, systems may be individually managed at their
consoles, or in a minor variation, may be remotely managed as
if at their consoles [19][22][50]. Such techniques must be
considered among the most primitive forms of system
management, as they provide no abstraction in support of the
virtual machine. Despite evident shortcomings, they remain
extremely prevalent. At the other end of the spectrum are fully
automated techniques for installing and maintaining systems
[2][6][14][38]. These work well on a large scale and in highly
ordered environments. They represent an ideal of system
management which is conceptually attractive but often difficult
to realize in practice. This is because computing environments
are most often observed to evolve chaotically.2 Few
organizations, in practice, seem prepared to develop a detailed
system management strategy and then follow it through to the
point where fully automated techniques could be applied.

Techniques at both ends of the spectrum thus prove to be
unsatisfactory in most environments. Consequently, somewhere
in the middle have arisen various ad hoc techniques which offer
some practical form of scalability along useful, but often
specialized and therefore constrained, dimensions [8][28][34].
Starfish is an example of this intermediate class, oriented
toward ac hoc management of groups of systems, but unusual in
having a very general focus with no inherent constraints on
capability. Its capabilities are powerful enough and secure
enough to manage systems in chaotic environments, thus
preparing them for a gradual migration toward our ideal of fully
automated management. Starfish is implemented in open
source, and uses open standards.

2 "The literature and common knowledge implies that there is
some strong definition of how a machine should be
configured in an environment. Yet the majority of the sites
that were interviewed could not say with certainty whether
or not any of their hosts matched that definition; they could
only say that they were working without complaint." [11]

3. Design Goals

In order to be valuable to its community, Starfish needs to be:

� secure, open
� small, simple, easy to use and verify
� powerful, scalable, extensible, portable
� equally suited to interaction and automation

It might seem as though these criteria together constitute an
overconstrained problem. However, we believe that Starfish
demonstrates, first of all, that this particular problem space is in
some sense actually synergistic, and second, that attractive
solutions are entirely achievable with careful design.

4. Design Requirements

Our first essential design requirement for remote system
management is simply to have a notation for expressing system
management operations. As we will see later, any such notation
must meet specific tests of expressiveness, power, and
portability:

� It must be expressive in the computational sense of being
suited to representing arbitrary algorithms for efficient
execution. In contrast, other management tools may use
notations which have limited expressive power or indeed are
purely parametric [2][6][27]. Such limited notations can be
valuable when managing ordered environments under
predetermined conditions, but they belong at the idealized
end of the system management spectrum. They would be
unable to adapt to the novel and chaotic environments
typically encountered by tools such as Starfish.

� The notation must be powerful in the sense of being able to
reach, without constraint, into every part of the system being
managed. How well this can take place depends in practice
on the capabilities of each individual system, and to some
extent on the architectural commonality among systems
being managed. We may decide to limit these powers under
certain conditions, but such limits should be imposed as a
policy decision, not a design decision.

� Finally, the notation must be portable not only in the sense
of providing graceful support for existing commonality, but
also in its ability to form new abstractions for common
integrative purposes.

Our second essential design requirement relates specifically to
the remote aspects of system management, and states that
communication between interacting systems must be
architecturally secure. Secure remote management calls for
secure communication, whose methods are traditionally
analyzed in terms of integrity, confidentiality and authentication
[10]. Though all three factors are clearly relevant to system
management, authentication turns out to be especially
interesting because of the high level of privilege which must be
exercised during typical system management tasks. Under these
conditions, a group of communicating systems forms a
privileged metasystem in which the security of one system
might have consequences for the others. Our design must
therefore not only authenticate to prevent outside interference

but also to make explicit the transfer of privilege [17][21][35]
within the metasystem.3

5. On Security and System Architecture

It would be irresponsible to discuss security without some
reference to architecture. Unlike many other system concepts,
security is not a component that can be meaningfully added or
removed from some isolated part of an architecture. Security is
only meaningful when considered as a property of the entire
design. For example, the security of a building is not much
enhanced by installing elaborate locks, as long as holes can be
kicked through the walls, or hinge pins removed. Security must
be considered not only in every element of the architecture, but
in every relationship between elements as well.4

Security is therefore better understood as an envelope which
must enclose every accessible surface of a system [31][33].
Only if the envelope is complete and intact can the system be
considered architecturally secure. In a distributed metasystem,
this envelope must enclose all of the component systems as well
as the network which connects them. Then we can reason about
security simply by examining the properties of a particular
envelope.

In practice, a model this simple is very difficult to realize. Real
metasystems have complex, overlapping relationships with other
metasystems, and may involve elements, such as networks,
which are not themselves secure. There is still hope for
security, however, as long as we are able to put a complete
envelope around some given subsystem. If we can do this for a
number of subsystems, a further step would be to
metaphorically cut a hole in each envelope, and then construct a
connecting tunnel between the holes. We now have a single,
topologically complete envelope consisting of the original
envelopes, the holes, the tunnel, and the joints between the
tunnel and the holes.

In this considerably more complex model, our ability to reason
about security will thus depend on our total knowledge of the
properties of each of these elements, as well as their topology
and relationships. Ironically, therefore, the security of the
operating system element is an essential prerequisite for secure
system management [49], even as it is the intended target for
system management tasks aimed at improving security.

To conclude this brief examination of secure architecture, we
can observe that security favors simple, structurally consistent
metasystems, built using a small number of clearly defined
elements, all having known properties and relationships. It
follows that when Starfish, or any other system management
tool, becomes a component of such an architecture, its role and
its properties should likewise be simple and clearly defined.
These will become important factors to bear in mind when we
consider the suitability of an implementation language.

3 Such insights are not always immediately obvious. It was
not until about 1988 that the Unix community realized that
whereas ordinary user privileges could safely be made
transitive across systems, superuser privileges could not.

4 "Cryptography differs from all other fields of endeavor in
the ease with which its requirements may appear to be
satisfied." [10]

6. On Security and Remote Management

As with the preceding discussion of architecture, we are obliged
to briefly turn our attention to consider how remote system
management contributes to security. In other words, what
motivates the use of a remote system management tool in the
first place? Although we will use a similar kind of security
language, note that this will be something of a departure from
our main question of what it entails to build such a tool.

Consider the proposition that consistency is the primary
condition for system security. Even in a single isolated system,
we need some way to enforce consistency between our model of
the system and its physical implementation. We observe that
the security of a system depends on how it has been configured,
for example what software has been installed and how each of
its features have been chosen [11][13][38]. Therefore, unless
there is some external, independent way to verify critical aspects
of its configuration, we have no basis for claiming that a system
is secure. In a metasystem, as we have seen, the nature of the
security envelope calls for further consistency among each of
the component systems, since otherwise any weakness in one
component will compromise the others. Moreover, the
configuration space and the potential for unforeseen interactions
are both simply larger in a metasystem than in any of its
components.

Consistency is likewise the primary condition for system
integration in general. The situation is comparable to the need
for version control [43] within a software development project.5

Internally consistent groups of systems have predictable
behaviors and interoperate cleanly. Conversely, gratuitous
inconsistencies between systems tend to compound over time,
producing divergent behaviors which become harder to correct,
or even to diagnose, as dependencies form. Indeed, whenever
we encounter computing environments in crisis, we invariably
find that they suffer from poor regard for consistency [12].

Whether for the purposes of integration or security, system
management thus has as its core activity the enforcement of
consistency in an environment which would otherwise tend,
under many influences, toward chaos. Effective system and
network management is a natural companion to effective system
and network security, to such an extent that it seems appropriate
to treat them as a single methodology.

7. Language Considerations

With this background, we can now return to the central topic of
language suitability. How do we decide in general whether a
language is suitable for remote control of an operating system?
The answer depends on the convergence of two sets of factors,
one having to do with the expressive characteristics of the
language itself, and the other with the capabilities of the
operating system and its methods for controlling them.

7.1. Expressiveness

Apart from structural features such as regularity and

5 While version control involves organizing multiple
configurations of a single system, integration imposes a
single configuration on multiple systems.

composability by which one programming language can be
abstractly compared to another, some language characteristics
are especially suited to the practical realities of system
management. For example, often even the most ad hoc
inspection and adjustment of system state involves repetitive or
recursive actions such as renaming a set of files or traversing a
directory tree. While a variety of command shell languages [4]
have specialized features for performing these actions, they
often come at the expense of linguistic completeness, for
example with respect to composability. Remarkably few shell
languages fully meet our test of expressiveness, and many
exhibit curious pathologies of syntax6 which interfere with good
programming practices.

Interpreted programming languages such as Lisp [26], Tcl [32],
and Forth [36] have the desired structural coherency while
preserving the important ability to express simple operations in
a simple way. Indeed, all three have been used with varying
success as command shell languages, but of these, Tcl seems to
have struck the best compromise in recognizing, along with
traditional shell languages, that a line of text is a natural unit of
computation equivalent to a function call. By comparison, Lisp
requires such expressions to be delineated with parentheses,
while Forth has no delineation at all. The former has been found
to be a practical annoyance, while the latter leads inevitably to
confusion.

Rather surprisingly, the strongest linguistic argument in favor of
Tcl for system management proves to be its simple ability to
integrate with native command shell syntax, and thus provide
access to native system services without recourse to special
quoting or escaping mechanisms. In this critical characteristic7,
it contrasts with alternative scripting languages such as Python
[25] and Perl [47], to say nothing of languages such as Java [16]
which must provide completely different abstractions in place of
native services.

7.2. Power

The question of language suitability is not as easily bounded
where factors of the operating system at large are concerned.
Consider that any given operating system may provide
arbitrarily many capabilities, using any conceivable form of
interface. Not all of these may be equally well devised for
remote or programmatic control. Indeed, with extraordinarily
few exceptions, operating systems make no particular
commitment to provide the same capabilities in the same way to
an interpreted command environment as they do to application
programs.

However, after some forty years of operating system
development we can at least make some practical observations.
The first is that most operating systems have in fact developed
means to control their services using a command line interface,
notwithstanding the various ways in which these services may

6 "The conventions are so simple and regular that they are
trivial to learn. By comparison with most other languages,
Tcl syntax is a pleasure to use." [24]

7 "This is a very important feature because this type of remote
access is the lowest common denominator that can usually
be found on almost any host or network device in the field.
It requires neither a graphical interface nor the installation
of special software." [28]

be implemented internally. The second is that the Tcl
community has provided so many interfaces to diverse
programming environments that for practical purposes we may
be satisfied that if a system service is available
programmatically, it can be made available in a command line
model. Indeed, all of Tcl extensibility is based on this premise.

There are limits to such an assumption, of course, since much
depends on the commitment by the operating system to
principled design. System facilities which can be controlled, for
example, only over a GUI, or only from the console, are limited
by their design in a way that no language can overcome.

7.3. Portability

Ordinarily, we think of software as being portable when it can
function in a way that is uncompromised by its environment.
The core Tcl/Tk interpreter is able to achieve portability in this
fundamental and necessary sense as much through careful
implementation8 as by the use of language formalism.

Although perhaps sufficient for application programming, this
sense alone is unfortunately not sufficient where system
programming is concerned. Operating systems differ precisely
because they provide differing capabilities and abstractions. We
argue that a mechanism for remote system management which
only supports a reduced set of features generic to all operating
systems can likewise have only limited practical application.

Instead, for system programming the ordinary sense of
portability has to be somehow revised so as to (selectively)
extend access to distinctive features of the system environment,
as well as to create unifying abstractions for features which
differ across systems. In this respect, it proves to be more
important that an implementation language provide flexibility
for abstraction, than for it to impose a rigid model of
abstraction, however elegant that model might seem.9 We have
enough to do just to cope with the artifacts of different operating
system designs, without compounding the problem with artifacts
of our own.

The careful pragmatism by which Tcl/Tk achieves ordinary
portability works to its advantage under this special condition of
systemic portability. Not merely can the interpreter be extended
to access arbitrary system features, but just as importantly, the
Tcl/Tk development community has shown consistent insight
and diligence in designing these extensions with portability in
mind. This last characteristic may not be part of the language
proper, but it undeniably influences its suitability for system
programming projects such as Starfish.

8. Language Features in Tcl/Tk

Exotic language features are not the first choice when building
secure systems. Besides the obvious concerns for program
clarity and portability, the use of a smaller and more prosaic

8 "Note that language implementations tend to be written in
themselves, particularly for their libraries. Perl’s
implementation is written mostly in Perl, and Python is
written mostly in Python. Intriguingly, this is not true for
Tcl." [48]

9 "Tcl tries very hard not to force a particular view of the
world." [24]

code base provides fewer potential sites of vulnerability, and
encourages more frequent exposure of the code to peer scrutiny.

As Starfish demonstrates, the core language features of Tcl/Tk
are naturally well suited to secure remote system management.
The following list describes features which we feel are
noteworthy:

� Extensions and Channel Stacking

The TLS extension [44] provides stacking of SSL [9][15]
security onto arbitrary Tcl channels. Therefore, neither
Starfish nor Tcl have to implement this element of the
security envelope directly, but instead can use the leverage
available through existing software, thereby improving
reliability.10

� Slave Interpreters

The essential function of a Starfish agent is to evaluate
expressions which it receives from a remote manager. In
Tcl, this can be done elegantly (and almost unremarkably)
within a slave interpreter, whereas most other languages
would require some kind of dispatch table in order to parse
expressions and perform the evaluation. The essential
behavior can be captured in just a few lines:

 set slave [interp create]
$slave alias unknown slaveunknown
set result [$slave eval $text]

� Command Isomorphism

Most operating systems provide a command language
interpreter whose basic line syntax closely resembles a Tcl
function call. The respect in Tcl for these syntax
conventions allows a Starfish agent to use the Tcl unknown
function to gracefully transfer control from the interpreter to
the operating system, or conversely to preempt that transfer
in favor of some behavior internal to the agent.

� Simple Event Model

It should come as no surprise that remote system
management needs to operate asynchronously in order to
scale well. The Tcl event mechanism provides a compact
abstraction which proves entirely sufficient for
asynchronous management. It is worth noting, however,
that even this simple abstraction introduces significant
complexity and consequent risk of confusion. The more
elaborate thread parallelism would certainly not be a better
choice for use in a security tool.

� Simple Exception Handling

Exceptional conditions are commonly encountered in remote
system management. We typically think of an expression as
evaluating to some value, and by induction we can in turn
understand compound expressions and predict the behavior
of control structures. Expressions evaluated remotely,

10 Recent improvements to SNMP [7][23] may permit it to be
used as an alternative transport. We are not aware of a Tcl
extension which provides access to this new functionality.

however, may instead drop communication, hang
indefinitely, time out, return no value, or return an infinite
sequence of values. Depending on our knowledge of the
remote system, such behavior many be expected or
unexpected, and we may wish to have some control over
how each case is handled.

Although it might seem that an elaborate exception
mechanism would be needed to classify and handle the wide
range of status codes, overflows, timeouts and so on which
might arise, the overriding requirement for scalable remote
management again turns out to be simplicity. We find it
sufficient to tag all remote evaluations with a simple marker
indicating success or failure, so that managers and agents
can anticipate how to sequence through compound
expressions which, in the nature of system management,
sometimes yield unexpected results.

The catch and error functions have so far proven
entirely sufficient for Starfish to model and propagate this
basic behavior. Should the need for richer exception classing
ever arise, the Tcl errorCode variable can be used to
carry the additional information. We do not anticipate the
need to extend control structure using the construct:

return −code n

� Simple Callback Model

Callbacks are used as a technique for passing function
bindings so that they can be invoked at some later time. A
classic dilemma for language designers is how to reconcile
the differences in scope between when the callback is bound
and when it is invoked. The concept of a closure, although
viable, introduces new and subtle considerations [1].

Tcl resolves the scoping dilemma by invoking the callback
at top level. This characteristically simple convention makes
callbacks immediately attractive and useful. Indeed, Starfish
would not be able to make effective use of OpenSSL [30]
without access to the callbacks it provides for password
management and certificate chain traversal.

� Simple GUI

About 40% of the Starfish manager is related directly to the
graphical user interface. This should be considered a
comparatively small ratio, reminding us that much of the
design of any application is influenced by its GUI. Our
emphasis in Starfish, however, should not be on the GUI,
but rather on the challenges of secure system management.
It is therefore fortunate that Tk provides a simple, compact
GUI whose defaults permit a minimalist style and encourage
portability.

� Soft Data Typing

Strong typing is useful for detecting type faults in
environments whose structure can be rigidly defined. These
are not, generally speaking, the environments in which
system management takes place. Operating system
components may well enforce strong typing for internal
data, but the system as a whole rarely presents a unified type
architecture that could be used by an external agent.

Furthermore, the agent itself must be able to work with
many different systems, where no common type architecture
can be expected.

For our purposes then, weak typing is vastly more
appropriate. In practice, the additional burden of care on the
developer proves to be minor, and the net result is simpler,
clearer program code.

� Soft Argument Lists

In a similar vein, soft argument lists have the effect of
making Tcl applications simpler and more versatile. In
addition, they prove to be compatible with command shell
syntax, eliminating another potential source of complexity.

� Simple Defaults

Although not strictly a property of the language, simple
defaults are ubiquitous in Tcl because the language
encourages them through soft data typing and soft argument
lists. Good defaults lead to economy of expression, as well
as to an inexpensive source of design clarity, as is evident in
much of the Tcl development effort.

� Binary Data

Starfish does not have a specific need to represent data in
binary form. However, we were very relieved when this
capability was added to Tcl, as the need for it could
suddenly arise due to some unforeseen protocol or system
consideration.

9. Comments on Scale and Style

It can be difficult to speak objectively about just what
programming environment is suited to what scale of application.
Subjectively, however, we can report that Tcl/Tk has
consistently felt like the right fit throughout the Starfish project.

Tcl/Tk encourages, and in some sense demands, a style of
incremental development in which a working prototype is
allowed to take form quickly, then to be elaborated, revised, or
even discarded at minimal cost. Though this style of
development tends to expose good design in projects of modest
size, it should not be expected to suit every project of every
size. We can, however, report that, at least in the case of
Starfish, it meets the design requirements for secure system
management, an activity in which, we would argue, the
standards are unusually rigorous. It may also be that the fit
between language and application is especially apt in our case
because system management itself is conducted as an ongoing
and incremental process.

As a final point on the subject of appropriate style, we note that
Tcl/Tk favors open source distribution. There are certainly
areas where the suitability of open source could be debated, but
for peer scrutiny of a cryptographically secure system there is
no contest. Mechanisms must be exposed in order for security
claims to be credible.

10. Comments on Security and Performance

The Starfish agent is defined completely in Tcl in about 850
lines of code. It takes one second to launch on a 100MHz Intel
processor and occupies about 3 MB of virtual memory, which
puts its resource demands on par, for example, with syslogd.

The core Starfish manager is defined in about 4800 lines of
Tcl/Tk. It launches in three seconds on a 100MHz Intel
processor and occupies about 5MB of memory, roughly half that
of xemacs.

By comparison, a complete OpenSSL session handshake takes
about one second using 384 bit RSA keys in both directions, and
assuming zero network overhead. This should be considered an
optimistic benchmark, as longer keys are ordinarily used.
Public key crypto and key exchange are, of course, known to be
computationally expensive [37].

These numbers serve to illustrate that the total application
overhead of Starfish implemented in Tcl/Tk is comparable in
speed to the best case overhead of a single asymmetric key
exchange in native code.

A tight code base is always a valuable design goal, but never
more so than in a security product. Less code not only means
intrinsically fewer points of vulnerability in the product, but
also more thorough exposure to peer scrutiny. The use of the
OpenSSL library not only reduces the Starfish code base, but
also takes advantage of the exposure and validation already
contributed by products such as Apache [3] and OpenSSH [29].
Furthermore, it encourages such work to continue, to the benefit
of every user of the digital commons.

In summary, secure remote system management is a domain
which emphasizes simplicity and clarity, making modest
performance demands beyond those associated with essential
cryptography. From this perspective, system management tools
are eminently suited to implementation in an interpreted
scripting language such as Tcl/Tk in which the cryptosystem can
be delivered in native code.

11. Conclusions

System management is an eminently practical field of
application in which to examine programming language design.
Expressiveness, power, portability, and security are all
important indications of language suitability. In each of these,
Tcl/Tk demonstrates outstanding strengths for system
management.

The size and complexity of the Starfish project also proves to be
a good fit for Tcl/Tk. Involving a few thousand lines of code
and being oriented specifically toward peer scrutiny and site
customization, it tries, like Tcl itself, not to force a particular
view of the world.

We have further seen that the relationship between application
and language becomes especially intimate in a project such as
Starfish where the theme of integration is played out at many
levels. It evidently remains an effective basis for comparison of
system programming languages.

12. Future Directions

The foundational work for Starfish is complete. We have found
that, at least where system management is concerned, small is
beautiful [46]. What remains are some very important questions
concerning the practical limits of systemic portability and
extension. Will the system management community adopt
Starfish and find its extensibility worth exploring in order to
meet specialized site requirements? Given the variety of
operating systems and the diversity of site requirements, how
much convergence might then be possible toward a common set
of system management primitives that all sites would find
useful? Could this process in turn help to guide operating
system design toward more unified architecture for secure
system management? And not least, at exactly what point can
ad hoc methods be handed over to automated methods?

13. Related Work

Starfish takes its inspiration from a simple login multiplexing
tool named octopus, written by George Phillips at the
University of British Columbia in 1989. Starfish was originally
implemented as a modification to Scotty/Tkined [39][40], and
after several years of experimental use was subsequently
redesigned and rewritten directly in Tcl/Tk. We are deeply
grateful for the assistance given by Jürgen Shönwälder during
the Scotty/Tkined development phase, as well as to Eric Young
and Tim Hudson for their work in bringing network
cryptography within reach of the open source community in the
form of OpenSSL.

Much interesting work on distributed system administration
appears in the LISA conference proceedings, particularly in the
years around 1994. It is remarkable how much of this work uses
Tcl/Tk as the implementation language. Several papers explore
concepts similar to Starfish, notably those by Pierce [34] and by
DeSimone and Lombardi [8]. Unfortunately, these projects
seem to have since lost momentum. Instead, emphasis has
shifted to automated configuration methods, with some of the
most consistent and principled work being reported by Burgess
[5]. The difficulty with such methods, as we have noted, is that
many environments appear too chaotic to take advantage of
them. Starfish exists to help turn that situation around.

14. Availability

Starfish is available under the GNU General Public License
from www.starfishsystems.ca.

References

[1] J. Allen, Anatomy of LISP, McGraw−Hill, 1978
[2] P. Anderson, "Towards a High−Level Machine

Configuration System," Proc. LISA 1994 (Sep 1994)
[3] Apache, http://www.apache.org/
[4] S. Bourne, "The UNIX Shell," Bell System Technical

Journal, vol. 57, no. 6 (Jul 1978)
[5] M. Burgess, "Computer Immunology," Proc. LISA 1998

(Dec 1998)
[6] M. Burgess, R. Ralston, "Distributed Resource

Administration Using Cfengine," Software − Practice and
Experience, vol. 27, no. 9 (Sep 1997)

[7] J. Case, R. Mundy, D. Partain, B. Stewart, Introduction to
Version 3 of the Internet−Standard Network Management
Framework, RFC 2570, The Internet Society (Apr 1999)

[8] S. DeSimone, C. Lombardi, "Sysctl: A Distributed System
Control Package," Proc. LISA 1993 (Nov 1993)

[9] T. Dierks, C. Allen, The TLS Protocol Version 1.0, RFC
2246, The Internet Society (Jan 1999)

[10] W. Diffie, M. Hellman, "New Directions in
Cryptography," IEEE Trans. Inform. Theory, vol. IT−22, no.
6 (Nov 1976)

[11] R. Evard, "An Analysis of UNIX System Configuration,"
Proc. LISA 1997 (Oct 1997)

[12] R. Evard, "Tenwen: The Re−Engineering Of A Computing
Environment," Proc. LISA 1994 (Sep 1994)

[13] J. Finke, "Automation of Site Configuration Management,"
Proc. LISA 1997 (Oct 1997)

[14] R. Finkel, "Pulsar: An Extensible Tool for Monitoring
Large Unix Sites," Software − Practice and Experience, vol.
27, no. 10 (Oct 1997)

[15] A. Frier, P. Karlton, P. Kocher, The SSL Protocol Version
3.0, Internet Draft, Netscape Communications (Mar 1996)

[16] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java
Language Specification Second Edition, Addison−Wesley,
2000

[17] R. Graham, "Protection in an Information Processing
Utility," CACM , vol. 11, no. 5 (May 1968)

[18] R. Greenblatt, T. Knight Jr., J. Holloway, D. Moon, D.
Weinreb, "The LISP Machine," Interactive Programming
Environments, McGraw−Hill, 1984

[19] Hewlett−Packard, Managing Systems and Workgroups: A
Guide for HP−UX System Administrators, B2355−90742
(Jun 2001)

[20] Hewlett−Packard, Ignite−UX Administration Guide,
B2355−90749 (Mar 2002)

[21] R. Housley, W. Ford, W. Polk, D. Solo, Internet X.509
Public Key Infrastructure: Certificate and CRL Profile, RFC
2459, The Internet Society (Jan 1999)

[22] IBM, System Management Interface Tool, (Nov 2000)
[23] J. Levi, J. Shönwälder, Definitions of Managed Objects for

the Delegation of Management Scripts, RFC 3165, The
Internet Society (Aug 2001)

[24] D. Libes, "Writing a Tcl Extension in only 7 Years," Proc.
Fifth Annual Tcl/Tk Workshop (Jul 1997)

[25] M. Lutz, Programming Python, O’Reilly, 2001
[26] J. McCarthy, P. Abrahams, D. Edwards, T. Hart, M. Levin,

LISP 1.5 Programmer’s Manual, MIT Press, 1962
[27] T. Miller, C. Stirlen, E. Nemeth, "satool: A System

Administrator’s Cockpit, An Implementation," Proc. LISA
1993 (Nov 1993)

[28] E. Mitchell, E. Nelson, D. Hess, "ND: A Comprehensive
Network Administration and Analysis Tool," Proc. LISA
2000 (Dec 2000)

[29] OpenSSH, http://www.openssh.org/
[30] OpenSSL, http://www.openssl.org/
[31] E. Organick, The MULTICS System: An Examination of Its

Structure, MIT Press, 1972
[32] J. Ousterhout, Tcl and the Tk Toolkit, Addison−Wesley,

1994.
[33] D. Peterson, M. Bishop, R. Pandey, "A Flexible

Containment Mechanism for Executing Untrusted Code,"
Proc. Eleventh USENIX Security Symposium (Aug 2002)

[34] C. Pierce, "The Igor System Administration Tool," Proc.
LISA 1996 (Sep 1996)

[35] K. Ramm, M. Grubb, "Exu − A System for Secure
Delegation of Authority on an Insecure Network," Proc.
LISA 1995 (Sep 1995)

[36] D. Rather, D. Colburn, C. Moore, "The Evolution of Forth,"
ACM SIGPLAN Notices, vol. 28, no. 3 (Mar 1993)

[37] R. Rivest, A. Shamir, L. Adelman, "A Method for
Obtaining Digital Signatures and Public−Key
Cryptosystems," CACM, vol. 21, no. 2 (Feb 1978)

[38] J. Rouillard, R. Martin, "Config: A Mechanism for
Installing and Tracking System Configurations," Proc. LISA
1994 (Sep 1994)

[39] J. Shönwälder, H. Langendörfer, "Tcl Extensions for
Network Management Applications," Proc. Third Annual
Tcl/Tk Workshop (Jul 1995)

[40] J. Shönwälder, H. Langendörfer, "How to Keep Track of
Your Network Configuration," Proc. LISA 1993 (Nov 1993)

[41] Sun Microsystems, Solaris 9 Installation Guide, 806−5205
(May 2002)

[42] Symantec, Symantec Ghost Implementation Guide, 07−30−
00482 (Nov 2001)

[43] W. Tichy, "RCS − A System for Version Control,"
Software − Practice and Experience, vol. 15, no. 7 (Jul
1985)

[44] TLS extension for Tcl,
http://sourceforge.net/projects/tls/

[45] S. Traugott, J. Huddleston, "Bootstrapping an
Infrastructure," Proc. LISA 1998 (Dec 1998)

[46] E. Schumacher, Small is Beautiful, Harper & Row, 1973
[47] L. Wall, T. Christiansen, J. Orwant, Programming Perl,

O’Reilly, 2000
[48] D. Wheeler, More Than a Gigabuck: Estimating

GNU/Linux’s Size,
http://www.dwheeler.com/sloc/

[49] C. Wright, C. Cowan, G. Kroah−Hartman, J. Morris, S.
Smalley, "Linux Security Modules: General Security
Support for the Linux Kernel," Proc. Eleventh USENIX
Security Symposium (Aug 2002)

[50] T. Ylönen, "SSH − Secure Login Connections over the
Internet," Proc. Sixth USENIX Security Symposium (Jul
1996)

