

Realizing Windows Look & Feel with Tk
Ron Wold

Model Technology
10450 SW Nimbus Avenue, Bldg RB

Portland Oregon, 97223
503-641-1340

rwold@model.com

Brian Griffin
Model Technology

10450 SW Nimbus Avenue, Bldg RB
Portland Oregon, 97223

503-641-1340
bgriffin@model.com

Abstract
ModelSim is a software tool in the Electronic Design Automation
(EDA) industry used by digital hardware design engineers. The
graphical interface for this tool was written using Tcl/Tk, which,
by default, follows the Motif look and feel. An effort was
undertaken to convert the interface from Motif to a Microsoft
Windows look and feel. This paper will discuss the issues that
were addressed, the Tcl/Tk changes that were made, and the
technologies that were developed to achieve the Microsoft
Windows style user interface.

Keywords
Tcl/Tk, look and feel, Microsoft Windows, GUI widgets, multiple
document interface, MDI, printing.

1. Introduction
A software product intended to support multiple hardware
platforms faces unique development issues. One such issue is how
to address the different graphical user interface (GUI) technologies
that are native to each platform. Tcl/Tk is a proven solution to this
problem − it defines a single technology base that runs on many
different platforms. But, a user interface is comprised of much
more than the technology it uses; a user interface is also defined by
its look and feel and a set of standards for user interaction.

2. Background
In the early 80's, as hardware design became more complex,
designers started turning to more abstract representations to
describe digital hardware. This lead to the development of
Hardware Description Languages (HDLs) similar to software
programming languages such as C and ADA. These languages
provided executable specifications that could be exercised and
tested before any silicon was created. Two languages have
emerged as the standard used today for digital design, VHDL [1]
and Verilog [2].

These languages are high-level programming languages. Thus,
ModelSim functions as a software IDE providing run control,
source viewing and editing, breakpoints, and the examination and

setting of run-time data. In addition to traditional debugging
features, the tool has to deal with the concurrent aspects of the
design languages. This leads to many views, many windows, and
lots of user interaction.

Originally released under the MS-DOS operating system,
ModelSim was ported to run under Windows 3.1, and then later to
several Unix platforms. At one point, three different versions of
the GUI were maintained, supporting OpenLook (Sun), Motif (HP)
and Microsoft Windows technology. The overhead of three
separate versions spurred the search for a single user interface
technology. The search ended with Tcl/Tk.

Over time, customer interaction led the ModelSim development
team to revisit the Motif look and feel. Terms such as “old”, “out-
dated” and “clunky” were used to describe the ModelSim interface.
Although the software had the necessary quality and functionality,
it became clear that a user’s perception of a tool is also based on an
abstract notion of its “look and feel”.

3. The Microsoft Windows Paradigm
Many factors combine to make a good user interface. One
important factor is consistency. “Software that is full of
inconsistencies, even minor ones, forces users to keep thinking
about it” [3]. Consistency refers not only to the interactions within
a single tool, but also to the interactions across all tools in the
customer’s suite. Another important factor is familiarity. Tools
that are easy to use often are so because the user has experience
with software that works similarly.

In an effort to improve the consistency and familiarity of the
ModelSim interface, a decision to adopt the Microsoft Windows
look and feel was made. This is not to say that Microsoft defines a
better methodology than OpenLook or Motif, but rather; that the
Microsoft look and feel will be more universally familiar to all ilks
of ModelSim users.

4. The Window
The first step in obtaining the Microsoft look and feel was to
define the basic window frame. We determined the window
should look as if it were built using the Microsoft Foundation
Classes (MFC).

ModelSim is a registered trademark of Model Technology
Incorporated. Model Technology is a trademark of Mentor
Graphics Corporation. PostScript is a registered trademark of
Adobe Systems Incorporated. UNIX and OpenLook is a registered
trademark of AT&T in the USA and other countries. Windows,
Microsoft, and MS-DOS are registered trademarks of Microsoft
Corporation. Motif is a registered trademark of The Open Software
Foundation.

Figure 1 is an example of the original ModelSim Main window,
Figure 2 is an example of the revised Main window. Both were
written with Tcl/Tk, but there were a number of minor changes
made to achieve the look of an MFC-based window. Note the
difference in the menu bar and toolbar. Besides color and font, the
height and spacing are different. The frame in Figure 2 contains an
indented marquee, a textured grab corner, and a flat edge. The
padding around various objects is less than the Tk defaults.

Toolbar icons were required, and they were used in place of
buttons labeled with words. The toolbar icons have balloon help
and the same icon transparency and size as a standard Windows
icon. Wherever possible, a native Windows icon is used, rather
than creating a new icon.

Figure 1. Original Main window (Motif)

Figure 2. Revised Main window (Windows)

5. Color and Fonts
Matching the color and font of the user’s desktop theme was an
important step to creating a “native” look and feel. Currently,
Tcl/Tk applications do not respond to appearance changes made to
the Windows desktop. Following the desktop settings, or rather,
not following them, highlights the degree to which an application
is integrated with the rest of the environment. This issue was
resolved by incorporating a patch from Ian Lance Taylor[8].
Responding to Windows’ messages on color and font changes
should be intrinsic functionality in Tk.

6. Menus
In addition to matching the look of the Microsoft menu bar,
attention was paid to the menu labels and their placement.
Windows-compliant tools follow a specific naming convention.
Common operations use specific names and are found in specific
locations. When defining the menu pick labels, we looked for
analogous functionality used in existing Windows-compliant tools.
For example, the command Create was replaced with New, and the
command Reload was changed to Refresh.

Windows users have also become accustomed to the popup menu.
Clicking the right mouse button creates a popup menu that is

sensitive to the location of the mouse and to the current selection.
Common operations and inquiries on selected items are placed in
the popup. For example, users have come to expect a Properties
command at the bottom of a popup menu.

7. Command Line
As in many other Tcl/Tk tools, ModelSim’s original cockpit was a
command line. Most commands were issued via the keyboard.
Windows applications, however, rarely support a command line;
users issue commands from menus, toolbars and dialog boxes.
Achieving a Windows look and feel required a de-emphasis of the
command line. All commands were made available through menu
picks, dialog boxes or toolbar icons.

Windows tools provide users with a starting place. With the de-
emphasis of the command line, it became necessary to create a new
window pane, a place from which the user would start. We chose
to call this pane a workspace.

The workspace is actually a tabbed pane: as the user's design
progresses, additional frames are added or removed in the
workspace. The key to a workspace is that it provides a persistent
view. It is a place where the user can see the current state of
things, much like looking at a browser showing the current files in
a directory.

8. Dialog Boxes
Dialog boxes play a large role in any user interface. If a Tk
programmer creates a dialog, adds some widgets and packs them
without regard to final form, the resulting dialog will not look
modern or intuitive. There are a number of factors that must be
considered in order to achieve an effective look and feel with
Tcl/Tk. These factors are both visual and behavioral.

8.1 Layout
Layout has little effect on the functionality of a dialog, but it does
affect the user's ability to find and understand the functionality.
The layout of a dialog cannot be left up to the grid manager and the
default geometry of widgets. Tk’s algorithmic layout will
guarantee that everything fits, but the results will not be
aesthetically pleasing. Figure 3 and Figure 4 are dialogs that
provide the same functionality.

Figure 3. Dialog box layout: Before

Figure 4. Dialog box layout: After

We found the following goals to be particularly helpful with
respect to dialog box layout:

Effective Use of Space- Attempt to reduce the amount of empty
space in every dialog box. It is easy to create large “holes” in a
dialog box using Tk. Reducing the amount of wasted space results
in a tighter fit and smaller dialog boxes. In Figure 4, the combo
box in the lower right corner is larger than is necessary. Rather
than leave a “hole” in the dialog, the box was expanded to fill in
the void area.

Alignment- Widgets should line up wherever possible. In Figure 3,
the layout of the first three rows was left to the grid manager and
nothing seems to line up properly. Alignment should be considered
in all four directions, not just left and right edges. In Figure 4, note
the last row with the Simulate and Simulator Resolution labeled
frames. It was necessary to add padding to the Simulate frame,
such that the height matched the Simulator Resolution frame.
Further, the Simulator Resolution frame was widened so that the
right edge would align with the list box above it.

Grouping- In Figure 3, it is not obvious that the Add button is
associated with the Simulate text entry box. In Figure 4, the
association was clarified by grouping the objects in a labeled
frame.

Padding- In Figure 3, notice that the Browse and Add buttons are
touching. Padding should be consistent across all widgets in the
dialog, as well as across all dialogs.

Size and Location – Unless specified, the size of a widget is
impacted by the other widgets on the dialog and how it is packed.
In Figure 3, the Library combo box will likely never hold a name
larger than 10 characters, yet the default Tk layout provides space
for 50 characters. Widgets should be sized and placed in a location
that correlates with the widget's significance.

8.2 Modality
A non-modal dialog does not require a cancel button. All
operations are made persistent the moment they are issued and
users can perform other operations while the dialog is still up. By
default, dialogs defined in Tk are non-modal. Yet non-modal
dialog boxes can be confusing for the majority of dialogs that are
essentially properties of GUI objects and are rarely found in the
Windows look and feel.

Converting a non-modal dialog to modal is more difficult than it
appears. Commands issued from a non-modal dialog are persistent.

The user will see the changes in the tool's primary window the
moment they are issued. Modal dialog commands are not
persistent, so the primary window cannot be used to provide
feedback. Modal dialogs require a second view of the data. This
view is contained within the dialog and as the user issues
commands, the secondary view reflects the changes. A modal
dialog must retain the commands that are issued by the user. If the
user presses the OK button, the commands are forwarded to the
primary window, where they are made persistent.

ModelSim had several non-modal dialog boxes. For some of these
dialogs, it did not make sense to change the modality. Dialogs
requiring continuous visibility were converted to persistent
windowpanes.

8.3 Widget Choice
Many of the widgets available to the Tk programmer look and
behave differently from widgets found in Windows. For example,
Figure 5 and Figure 6 are two types of non-editable drop down
combo boxes. Figure 5 is a Tix widget and Figure 6 is an Incr
Widget. Both widgets perform the same functionality, but the Incr
Widget is a much better choice for achieving a Windows like look
and feel. It displays and behaves almost identically to the standard
Windows combo box.

Figure 5. Tix option menu widget

Figure 6. Incr combo box

8.4 Tri-State Widgets
Consider the following scenario: within Windows Explorer you
select two files, one that is read-only and one that is not. Next you
bring up the "Properties" dialog and there is a check box control
based on the read-only property. The Windows look and feel
defines that the control be displayed as tri-state. The control is
neither true nor false, but is in a third state meaning undefined or
ambiguous.

Tri-state controls allow users to change properties on multiple
objects at once, even thought the objects’ properties may differ.
Without tri-state controls, a dialog cannot represent the “mixed”
state. This Tk deficiency is usually handled by enforcing a single
select model. With a single select model, the user can select only
one object at a time, and the widget’s value is never ambiguous.
Allowing only one object to be selected removes the requirement

for tri-state behavior, but it also makes a common manipulation of
many objects incredibly tedious.

The Windows look and feel clearly defines how a widget is
displayed in each of the following states: disabled, enabled, and tri-
state. Figure 7 is an example of how a check box is displayed in
the various states.

 disabled condition enabled condition tri-state condition

Figure 7. Tri-state checkbox

With Tcl/Tk it was necessary to implement this display behavior.

8.5 Typing vs. Clicking
The Windows interface avoids typing wherever possible; pointing
and clicking with the mouse is always the preferred method for
providing input. Consider Figure 8, which shows a dialog for
entering a pathname to an existing file. The dialog appears normal
to an OpenLook or Motif user, but a Windows user would find this
dialog odd given that the dialog is requesting a single pathname.
Instead, one would expect to see the Open common dialog (Figure
9), which can be navigated entirely with the mouse. When
defining dialogs with a Windows look and feel, text entry boxes
should be used only where absolutely necessary.

Figure 8. Entry box used for file pathnames.

Figure 9. Windows common dialog for file pathnames.

9. Drag & Drop
Dragging and dropping objects (DND) between windows is a
common capability of the Windows interface. DND is not native
to Tcl/Tk, but there are extensions available that provide support
for it. If an object can be selected, then it may be appropriate to

add dragging support. If a pane allows items to be added to it, then
it is a likely candidate for supporting dropping.

DND support not only involves interaction between the various
windows of a single tool, but also with other tools as well. Initially
ModelSim allowed objects to be dragged between its various
windows. Later, TkDND [5] was added, which provided support
for dragging and dropping with external tools as well.

10. Customization and Dockable Panes
Tools that provide many different views of information confront
issues with display real estate. The Windows look and feel
employs various techniques for handling screen real-estate issues.
One method is called view customization and is used to hide
unnecessary data. For example, hiding unnecessary columns in a
multi-column list reduces the overall width of a window, freeing
space for more important data.

A second method for handling screen real estate is through
dockable panes. Dockable panes, including tool and menu bars,
allow the user to adjust height, width, and position (Figure 10).

 (a) (b)

Figure 10. Dockable panes

Tcl/Tk does not define dockable panes so it was necessary to
implement this functionality. This is achieved by defining an
arbitrary grid object in the main windowpane. The grid allows the
width and height to be adjusted, and the “pack –in” facility allows
the panes to be repositioned. The Windows dockable pane model
allows panes to be dragged outside the parent frame, and when
dropped they become a stand-alone window. Due to the common
ancestry constraint with pack –in, this functionality can be
achieved only by constructing a new frame.

11. Printing
For most Windows users, printing is a basic function that is
expected. In ModelSim there was one window in particular that
users expected to have a printing function. The wave window
provides a graphical display of user data, and it's contents could
not be represented with a textual report.

To support printing, Windows drawing routines require a device
context (DC), a structure that describes the output device. Output is
sent to the printer by changing the DC from the screen to a printer.
Unfortunately, Tcl/Tk does not provide a method for changing the
DC. After reviewing the GDI and Printer extensions [6] for Tk, it
was concluded that access to the DC could be gained via custom
widgets. Fortunately, the wave window had been constructed from
custom widgets due to performance considerations.

Figure 11 is a diagram of the call sequence to illustrate how
printing is supported. The non-shaded boxes represent the call
chain prior to the addition of printing. The custom widget makes
Xlib calls to render itself. On platforms that use an Xserver, the
calls are handled directly by the operating system. For non-Xserver
platforms, the Xlib calls are translated into equivalent native calls.

Application

Tk

Custom Widget

XLib Protocol

XLib

Window API

XLib to Window s
with Printer DC

Function Pointer

print setup

XLib to Window s
with Display DC

Figure 11. How printing is supported

Supporting printing was not as simple as swapping the DC on the
Windows API call. The translation code was defined within Tk,
and there was not an obvious method for changing the DC. The
solution involved duplicating the Tk translation routines and
placing them within the custom widget. These duplicate routines
were then modified to use a different DC. Next, the custom
widget’s Xlib calls were converted from a direct call to a function
pointer. The function pointer could be toggled to call either Tk’s
display routines or the custom widget’s printer routines.

The next concern involved pagination, or size of the output and
how it is scaled to a printed page. The printer setup action
involved bringing up a print dialog where the user selected page
size, orientation, margins, etc. Also, the user specified which
printer to send the output to, allowing the tool to create the DC for
that printer. Pagination is then handled at the application level by
combining page size information from the user and printer with
total view size information from the widget. The widget is then
directed to print each page.

The solution described here is specific to this custom window and
involves participation by both the widget and the application. It is
less than ideal, but may have implications for a general solution.

12. Multiple Top Level Windows and MDI
At one point, ModelSim supported a multiple document interface
(MDI). When the tool was ported to Tcl/Tk, the MDI functionality
was not available, so each separate window pane became a stand-
alone, top-level window. There were nine different top-level
windows, and a user could easily become overwhelmed with sizing

adjustments and visibility issues. Despite adding automatic
window placement options such as tiling and pre-defined layout
schemes, multiple top-level windows still did not reflect a
Windows look and feel.

To solve this issue, several of the top-level windows became
several panes within the Main window. In the first phase, we
moved several commonly used windows into the Main window.
These windows were “re-parented”, and have been called static
window panes. For our next phase, we started working with the
Mysund MDI extension [7]. The first stage of the MDI
implementation was to implement the widget using IncrTk, as it
provides a cleaner interface to the MDI widget.

At the time of this writing the MDI project is not complete. Once
the functionality stabilizes, the remaining top-level windows will
be incorporated into the Main window, resulting in a tool
comprised of a single, top-level frame.

As an aside, Microsoft, who first introduced the MDI concept,
appears to be abandoning MDI in favor of Web based interfaces:

"Note MDI is an application-oriented model. Many new
and intermediate users find it difficult to learn to use MDI
applications. Therefore, many applications are switching to
a document-oriented model. Therefore, you may want to
consider other models for your user interface. However,
you can use MDI for applications which do not easily fit
into an existing model until a more suitable model is
introduced." [4]

However, because of the complex, multi-dimensional nature of this
application, a simple Web or document interface would never do.

13. Wizards
Windows applications frequently include wizards, a series of
dialogs that walk users through a complex operation. The dialogs
are presented in a predefined order, and the user cannot move to
the next dialog until the current dialog has been filled out. Users
can always move back to an earlier dialog at any time.

Tcl/Tk does not provide support for wizards; However, all of the
functionality necessary to define a wizard exists. To insure
consistency, we chose to define a wizard infrastructure or basic
wizard. The basic wizard contains the next, back and cancel
buttons, a frame for the current page's contents, and the necessary
validate functions that allow testing of the current page’s data.

14. Multi-Column Hierarchical List
The multi-column hierarchical list can be found in just about every
Microsoft Windows tool (e.g. Microsoft Explorer.) Although
several Tcl/Tk widgets support much of the needed functionality,
no single widget contains all of the features required by ModelSim.
It was necessary to develop a new widget that supported navigation
through hierarchical expansion of list items, multiple columns,
resizing of columns, and sorting by clicking on the column
headers. In addition, the list must be capable of displaying icons
and other graphical indicators that are commonly found in
Windows lists. The list also must support adding new columns or
hiding existing columns.

Figure 12. Multi-column hierarchical list

Several attempts were made to use existing hierarchical widgets,
but each attempt resulted in limited success. It was difficult to
support column resizing and sorting using the Tix widget, and the
IncrWidget has performance problems with large trees.

With the development of a multi-column hierarchical list that
matched the Windows look and feel (Figure 12), we began the
process of replacing all of the other Tcl/Tk list widgets within the
tool. Consolidating on a single technology has two major
advantages. First, all lists throughout the tool have the same look
and feel. Second, maintaining ownership of the list widget allows
us to modify the widget and obtain the exact behavior we need.

15. Conclusion
The authors confronted many issues trying to achieve a Windows
look and feel in a Tcl/Tk-based application. Although the key
points vary widely, the issues fall into three categories. The first
category refers to issues that required development of a custom
solution. In an ideal world, these items would be available within
Tcl/Tk for use by all.

• A standard multi-column hierarchical list

• Intrinsic tri-state widgets

• Standard dialog box wizard support

• Dockable/Undockable window panes

• A standard toolbar that supports customization as well as
docking

• Printing support, or at least, printing hooks

• MDI support

• Drag and Drop

The second category includes issues that did not require
technology development, but that must be considered at all times
to achieve a Windows look and feel.

• Dialog box modality

• Usage of Microsoft Windows like widgets only

• Dialog box layout, spacing and alignment

• Limiting the number of top-level widgets

Lastly, a number of issues were discovered that do not deal directly
with Tcl/Tk, but that are related to the overall goal of achieving a
Windows look and feel.

• Usage of Microsoft Verbs and Nouns

• Multiple selection support wherever possible

• Provide point and click operations over typing

• Always provide popup menus and property choices

16. Acknowledgements
Our thanks to the Tcl/Tk community for providing a powerful,
flexible, and portable GUI platform.

Many thanks go to the colleagues and wives for the hours spent
critiquing this paper.

17. References
[1] Doulos, A Brief History of VHDL,

http://www.doulos.com/fi/desguidevhdl/vb2_history.htm.

[2] Doulos, A Brief History of Verilog,
http://www.doulos.com/fi/desguidevlg/vb2_history.htm

[3] Johnson, Jeff, GUI bloopers: Don’ts and Do’s for Software
Developers and Web Designers, Morgan Kaufman Publishers,
San Francisco, (2000), pp 42.

[4] MSDN web site:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/windowing/multipledoc
umentinterface.asp

[5] Petasis, George, TkDND,
http://www.iit.demokritos.gr/~petasis/Tcl/tkDND/tkDND.htm
l.

[6] Schwartz, Michael I., GDI and Print extensions for Tcl,
http://www.du.edu/~mschwart/Gdi.txt,
http://www.du.edu/~mschwart/Printer.txt.

[7] Svensson, Jesper, Mysund MDI
http://www.geocities.com/SiliconValley/Lab/6236/tcltk.html

[8] Taylor, Ian Lance, <ian@cygnus.com>, Subject: Adapt to
user requested color changes in Tk on Windows,
Newsgroups: comp.lang.tcl, Date: 1998/04/16

	Abstract
	Keywords
	Introduction
	Background
	The Microsoft Windows Paradigm
	The Window
	Color and Fonts
	Menus
	Command Line
	Dialog Boxes
	Layout
	Modality
	Widget Choice
	Tri-State Widgets
	Typing vs. Clicking

	Drag & Drop
	Customization and Dockable Panes
	Printing
	Multiple Top Level Windows and MDI
	Wizards
	Multi-Column Hierarchical List
	Conclusion
	Acknowledgements
	References

