TcIXML: The Next Generation

Steve Ball

St eve. Bal | @veno. com
Zveno

http://www.zveno.com

Abstract

TcIXML is a family of packages that together provide com-
prehensive support for creating and processing XML docu-
ments using the Tcl scripting language. The package family is
comprised of TcIXML (for SAX-style streamed parsing),
TcIDOM (for in-memory tree manipulation) and TcIXSLT
(for transformations).

New developments in each of the packages are discussed, as
well as new XML-based applications that make use of the
TcIXML framework. The most important aspect of these de-
velopments is its impact on application development and inte-
gration.

1. Introduction

The TcIXML project [1] encompasses three closely related,
but separate packages - TcIXML, TcIDOM [2] and TcIXSLT.
Together these packages provide a comprehensive toolkit for
accessing and manipulating data in XML documents [3].
From their early development these packages have concen-
trated on the design of APIsto allow application developersto
write code that is independent of the package's implementa-
tion. TcIXML and TcIDOM both have a Tcl implementation,
meaning that no Tcl extensions are required to gain thier func-
tionality, albeit with slow run-time performance. Recent de-
velopment has added fast implementations to these packages.

The major addition to the TcIXML project has been Tcl wrap-
pers for the Gnome libxml2 and libxdlt libraries [4]. libxml2
isa C library that features XML parsing, DTD validation (a
priori and posteriori), an in-memory tree representation and
support for XPath [5]. The library's run-time performance is
very fast, with efficient memory usage. libxml2 aso has
wrappers for Python, Perl, Ruby as well as other languages
and is also available as a PHP module.

libxdlt is a C library for performing XSL transformations
(XSLT) [6]. Regarded as perhaps the fastest currently avail-
able XSLT processor, libxslt also features the ability to pre-
compile and cache stylesheets, as well as an interface to
XSLT's extension mechanism that alows third-party exten-
sions to be implemented in C. There are wrappers for the

libxdlt library for Python, Perl and Ruby.

Since both libraries are in widespread use they are stable,
well-tested and well supported.

Tcl applications that process XML documents often need to
navigate the document tree, or otherwise identify some part of
a document to process. The W3C XPath language has been
designed for this purpose. XPath is part of the XSLT and
XML-Query languages, and DOM Level 3 [7] aso has sup-
port for XPath. Addressing a document component using
XPath is quite succinct, as the following examples show:

/ book

/ book/ chapt er

Iltitle

/I section[sectioninfo]/para

Example 1. XPath Expressions

The first path selects the document element book. The sec-
ond path selects al chapt er elements within a book. The
next path selects al titl e elements in the document. The
last path selects all par a elementsinasect i on element, as
long as that sect i on element also contains a secti on-
i nf o element.

XPath expressions can aso be used to compute values. For
example,

count (val ue)
returns the number of val ue elementsthat are children of the
current node.

TcIXML now has an XPath parser. TcIDOM/tcl has partial
XPath support and TclDOM/libxml2 has full X Path support.

2. TcXML

The TcIXML package provides an APl for SAX-like [8]
XML document parsing. That is, it is a streamed, event-based
XML parser. It also provides implementations of a number of

http://www.zveno.com/

XML parsers. XML parser implementations have different
characteristics and trade-offs: some may concentrate on raw
performance, some may provide validation while others may
be highly flexible and configurable. For this reason, an appli-
cation may need to use different parsers during the course of
program execution. In order to support this requirement, ver-
sion 2.0 of the TcIXML package has introduced a layered ar-
chitecture.

Like the SAX specification for Java and Python, the new
TcIXML V2.0 package provides a generic interface to appli-

C expat

C libxml

cations and a separate interface for a parser implementation.
The generic layer passes method calls and configuation op-
tions from the application to a parser implementation, and
passes data from the parser implementation to the application.
TcIXML's API for applications hasn't changed very much, so
in this paper we will concentrate on the new back-end APIs.

Figurel. TcIXML Architecture

A parser implementation defines a parser class. Parser classes
are registered with the TcIXML generic layer using the
Tcl XML_Regi st er XM_Par ser function (at the C level)
or the ::xml::parserclass command (at the Tcl level). The
implementation passes a structure that includes pointers to
various functions, such as those to create a parser, destroy a
parser, configure a parser as well as parsing data. Whenever
the application requests that a parser be created, using the
xml::parser command, the creation method of the parser
classisinvoked to create a parser instance. The generic layer
aso creates a new Tcl command to control the newly created
parser instance.

Normally an application will register callback Tcl scripts with
aparser instance in order for it to receive data during the pars-
ing operation. These callbacks are registered using the parser
instance command. TcIXML version 2.0 aso introduces
equivalent callback registration facilities at the C API level,
dlowing data to be delivered to the application without any
overhead imposed by the Tcl interpreter.

TcIXML version 2.0 includes a Tcl implementation of a
parser class, as well as a wrapper for the expat library. It is
planned to include a wrapper for the libxml2 library in version
3.0 of TcIXML.

3. TcIDOM

The W3C Document Object Model (DOM) is a language-neu-
tral description of an API for representing an XML (or HTML

or SVG) document as atree of objects. DOM provides a stan-
dard set of objects along with properties and methods for ma-
nipulating those objects. Evolution of the DOM standard is
described by levels, DOM Level 1 defines basic tree objects,
properties and methods for XML, DOM Level 2 adds support
for XML Namespaces, as well as other features such as
Events, and DOM Level 3 (currently in Working Draft stage)
adds support for XPath, as well as other features such as load-
ing and saving.

The TcIDOM project is a Tcl language binding for the W3C
Document Object Model (DOM). It defines a Tcl API that
matches, as closely as is reasonable, the W3C DOM specifi-
cation. The project also provides a Tcl script package that im-
plements the API. As can only be expected, the script imple-
mentation is slow and memory-hungry.

Version 2.0 of TclDOM introduces a number of new features,
the most important being a new implementation - a Tcl wrap-
per for the Gnome libxml2 library. The Gnome libxmi2 li-
brary is written in C and provides comprehensive set of fea-
tures for manipulating XML documents in-memory, including
SAX parsing, validation and a tree representation. The library
is fully conformant with the W3C XML Recommendation as
well as the W3C Namespaces in XML Recommendation.
libxml2 does not provide a DOM API; TcIDOM makes use of
its native tree functions. A major benefit of using libxmlI2 is
speed; it is regarded as being one of the fastest XML proces-
sors available. To illustrate this the following table shows a
performance comparison between the Tcl and TcIDOM/
libxml2 TcIDOM implementations. Table 1 shows the time

taken, in microseconds, to run a simple script that creates a
number of DOM element nodes. Measurements were per-
formed on a Macintosh 800MHz G4 PowerBook, 512MB
RAM, Mac 0S 10.1.5.

Although the Tcl wrapper for libxml2 is of great benefit to
Tcl applications using the DOM, the original motivation for
its development was to support handling libxml2 Document
objects in conjunction with TcIXSLT (see below). Unfortu-
nately, the functionality of libxml2 does not map directly to
TcIXML and TcIDOM; the one library will require support
from both Tcl packages for a full implementation of the fea-
ture-set.

Elements Tcl Implementa- TcIDOM/libxmi2
tion

100 1061457 48113

625 6334016 282178

2500 24883886 2680458

Table 1. Tc|DOM Performance Comparison

3.1 TcIDOM/libxml2 Design

There were a number of goals for the design of the Tcl wrap-
per for libxml2:

1. Compatibility with TcIXSLT.
2. Compatibility with the Tcl implementation of Tc|DOM.
3. High-performance.

The first goa has been achieved by making the TcIXSLT
package use the TcIDOM C API.

The second goal has been achieved by ensuring that the
TcIDOM API was faithfully implemented.

The third goal is achieved in a number of ways. Firstly, where
possible internal libxml2 APIs are used to implement func-
tions rather than Tcl APIs. For example, parsing an XML doc-
ument is handled directly by libxml2. Mainly, the TcIDOM/
libxml2 package uses the internal representation of Tcl ob-
jectsto cache Document and Node references.

Unfortunately, it does not appear possible with Tcl to trans-
parently represent an XML document as a DOM tree. Thisis
because DOM trees are mutable objects, and Tcl objects have
copy-on-write seminatics. That is, the following use case can-
not be supported:

package require dom

set xm doc {<MyDoc>
<Val ue>FooBar </ Val ue>
</ MyDoc>}

set docEl enent [dom :docunment cget $xm doc \
- docunent El enment]
dom : docurent creat eEl enent $docEl ement Val ue

puts $xml doc

Example 2. Transparent Accessto XML Documents

As with other Tcl extensions that must handle mutable ob-
jects, the solution is to use object references, or "tokens'.
TcIDOM/libxml2 registers new Tcl object types that corre-
spond to libxml2 xmIDocPtr and xmINodePtr types. Tcl ob-
jects of these types store a reference to the libxml2 object in
their internal representation. These objects also have a string
representation alocated - the "token". The token string is
stored in a Tcl hash table. Tcl object internal representations
are easily logt, so in these situations the token is looked up in
the hash table and the internal representation restored.

The TcIDOM/libxml2 package maintains two globa hash te-
bles for al DOM documents. One of the hash tables is in-
dexed by the document's token and the other by the Document
object's memory address. Each document also maintains two
Tcl hash tables; one for tree nodes and the other for event
nodes.

libxml2 Documents and tree nodes are mapped to asingle Tcl
object. The _private field of the Document or Node structure
is used to point back to the corresponding Tcl object. In order
for the system to be as efficient as possible, the mapping of
Document and Node objects to Tcl objects is performed
lazily, that is only when required. Initial testing and usage of
this scheme appears to indicate that it works well, but there
are some issues with it. When a document is destroyed all of
the node references in Tcl object internal representations be-
come invalid. If these Tcl objects are subsequently used they
will result in program failure due to dangling C pointers,
whereas they should result in a catchable Tcl error. To resolve
this problem, when a document is to be destroyed the package
first iterates through all of the references stored in the docu-
ment's node and event hash tables, performs a look up of the
corresponding Tcl object and resets its internal representation.
The (as yet unresolved) problem is that there may be more
than one Tcl object with a pointer to the node.

documents

docByPtr

"doc1"

Tcl_HashTable

LT nodes
xmlDoc
Tcl_HashTable
events
Tcl_HashTable
xmINo

— &xmlDoc

Tcl_HashTable

Tcl _Obj

"doc1.node1"

Tcl _Obj

Figure2. TcIDOM Architecture

There is no limit on the size of a DOM tree, both in terms of
data and nodes. Thisis unlike other tree structures often mod-
elled in Tcl applications, such as the Tk widget hierarchy.
While it is unlikely that a Tk GUI would have over a million
widgets, it is entirely possible for a DOM tree to have that
many or more nodes. For example, this (relatively small) pa-
per has over six hundred element and text nodes, whereas a
Tk GUI with over six hundred widgets would be considered
to be a moderately complex application. For this reason it is
very important to minimise the memory overhead of DOM
nodes. TcIDOM/libxml2 adds a hash table entry for each node
that is wrapped. In addition, the hash table may become very
large, slowing hash entry lookups. For this reason the design
of the TcIDOM API has avoided defining node commands,
since having many node commands defined may slow down
lookup of unrelated Tcl commands. However, creating node
commands in a separate Tcl namespace may make this design
choice feasible. This approach may be explored in TclDOM
version 3.0.

3.2 XPath

Another major improvement in TcIDOM is support for XPath
expressions. Applications using TcIDOM commonly need to
navigate the DOM tree, or to select nodes in the tree for pro-
cessing. This can be quite tedious when using only standard
DOM methods and attributes. XPath is a language for ad-
dressing parts of an XML document. It is extremely conve-
nient to use for the purpose of document navigation and node
selection. TcIDOM provides afacility for selecting new DOM
nodes given a context and an XPath expression, which can be
either an absolute or relative location path. XPath support is
present in both the Tcl and libxml2 implementations, but is
incomplete in the former.

set doc [dom :parse $xni]
foreach node \
[dom : sel ect Node $doc /records/customer] {
set naneNode [lindex \
[ijom :node sel ect Node $node nane] \
0
set nane [dom :node stringVal ue $naneNode]
set db [DB_Create -custonmer $nane]

Example 3. Using XPath

The return value of the sel ect Node method is a static list
of node tokens. When the sel ect Node method is used with
the dom::DOM Implementation command, the root node of
the document is the initial context for the location path. This
is useful when the location path is an absolute path. When the
method is used with the dom::node command the given node
istheinitial context for the location path. This is useful when
the location path is arelative path, but absolute paths will also
be resolved correctly.

4. TCIXSLT

Another package available from the Gnome libxml project is
the libxslt XSLT processor library. libxdlt isafast XSLT en-
gine written in C, fully conformant to the W3C XSLT version
1.0 specification. The libxdlt code uses libxml2 to store and
manipulate XML documents in memory, as DOM trees.
libxdlt has been written as a library, and is easily embeddable
in an application.

TcIXSLT, a newcomer to the TcIXML family, is a wrapper
for the Gnome libxslt library. Unlike the TcIXML and

TcIDOM packages, TcIXSLT provides only thissingle XSLT
processor implementation and has no provision for a layered
architecture to allow aternate implementations. It provides an
interface to compile X SL stylesheets and then transform XML
documents using those stylesheets. The source XML docu-
ment and stylesheet document must be supplied to TcIXSLT
as TcIDOM/libxml2 Document objects, thus TCIXSLT is de-
pendent upon TcIDOM in the same way that libxslt is depen-
dent upon libxml2.

4.1 Transforming XML Documents

The major purpose of the TcIXSLT package is to make use of
the libxdlt library to transform XML documents with an XSL
stylesheet. To do this, an XSL stylesheet must first be com-
piled using the ::xdlt::compile Tcl command. This command
requires a TclDOM/libxml2 Document object as its argument
(since XSL stylesheets are, in fact, XML documents). Inter-
nally, the compile command copies the Document object and
then invokes the libxslt stylesheet compiler upon the copied
Document. Copying the document is necessary because libxslt
makes use of the _private member of the xmIDoc and xmlN-
ode structures.

set styledoc [dom:libxnl 2::parse $styl eXM]
set stylesheet [xslt::conpile $styledoc]

Example 4. Compiling An XSL Stylesheet

The return result of the xslt::compile command is a token for
the compiled stylesheet. A side effect of the command is to
create a new Tcl command, caled the stylesheet command,
with the same name as the returned token. This new command
may be used to access and manipulate the compiled
stylesheet. The stylesheet command acceptsthet r ansf or m
cget and confi gur e methods.

t ransf or mis the most important method of the stylesheet
command. This method transforms the TcIDOM/libxml2
Document object supplied as an argument and returns the re-
sult document as a new TclDOM/libxml2 document. The re-
sult document may be used via the TcIDOM/libxml2 package,
just like any other DOM tree created by the package. For ex-
ample, the result document may become the source document
of another transformation, or may even be compiled and used
as a stylesheet. Thus TcIXSLT alows efficient pipelining of
XSL transformations and caching of compiled stylesheets, as
well as caching of source and result documents.

set sourcedoc [dom :|ibxm 2:: parse $sourcexXM]
set styledoc [dom :Ilibxm 2::parse $styl eXM]
set stylesheet [xslt::conpile $styl edoc]
set resultdoc [$styl esheet transform\
$sour cedoc]
set resul tXM. [dom :libxm 2::serialize \
$resul t doc]

Example 5. Performing A Transformation

4.2 XSLT Extensions

The XSLT standard provides a means for XSLT processor
implementations to extend the number of functions and ele-
ments available for use by the XSL stylesheet. Extension
functions and elements allow the XSLT processor implemen-
tation to provide features not present in the XSLT specifica
tion. XML Namespaces are used to identify which functions
and elements belong to an extension. The libxdlt library pro-
vides an API for defining extensions, and includes an imple-
mentation of the EXSLT extension set.

<xsl : styl esheet version='1.0'
xm ns: xsl =

"http://ww. w3. org/ 1999/ XSL/ Tr ansf or m
xm ns: ext="http://exslt.org/ common'
ext ensi on- el ement - prefi xes="ext' >

<xsl:tenpl ate match=' Exanpl e' >
<ext:docunent href="exanple.xm"'>
This is an extension.
</ ext : documnent >
</ xsl : tenpl at e>

</ xsl : styl esheet >

Example 6. An XSLT Extension

TcIXSLT features a binding to the libxslt extension mecha
nism that allows extensions to be implemented as Tcl scripts.
The extension mechanism provided by TcIXSLT associates
the XML Namespace used by the extension to a Tcl names-
pace that implements the extension. The ::xdlt::extension
command is used to manage these associations.

xsl t: extension add \

http://ww. zveno. conf resources ::resources

Example 7. The xdt::extension Command

The add method of the ::xdlt::extension command creates an
association between an XML Namespace and a Tcl names-
pace. There are also methods to r enove and list these asso-
ciations.

The TcIXSLT package's extension mechanism registers al
Tcl procedures in the given Tcl namespace as either XSLT
extension functions or XSLT extension elements. If the proce-
dure accepts a variable number of arguments, then it is regis-
tered as an extension function. Otherwise it is registered as an
extension element. TcIXSLT uses Tcl introspection (ie, the
info args command) to determine what formal parameters a
procedure accepts. Thus it is not possible to directly register

Tcl built-in commands. Registration occurs when an XSLT
stylesheet isinitialised using the ::xdlt::compile command.

nanespace eval ::resources {
proc exists {resource args} {
return [info exists $resource]

Example 8. Registering An Extension Function

The example above would cause the exists extension function
to be registered in the http://www.zveno.com/resources exten-
sion namespace.

<xsl : styl esheet version='1.0'
xm ns: xsl =

"http://ww. w3. org/ 1999/ XSL/ Tr ansf or m
xm ns: resource="http://ww. zveno. coni r esour ces'
ext ensi on- el enent - prefi xes='resource' >

<xsl:tenpl ate mat ch=' Foo' >
<xsl : val ue- of
sel ect=
'resource: exi sts("/ home/ steve/doc")"' />
</ xsl : tenpl at e>

</ xsl :tenpl at e>

Example 9. Using an Extension

The stylesheet in the example above declares the extension
using the extension-element-prefixes attribute. Now the XML
namespace http://www.zveno.com/resources is associated
with the Tcl namespace ::resources and the procedure
:resources::existsis registered as an extension function. The
current implementation of TcIXSLT, version 2.2, converts the
arguments to an extension functions to a string value, appends
these values to the procedure name and then evaluates the re-
sulting command line, as shown in the following example.

;:resources: :exists /honme/ stevel/ doc

Example 10. Evaluated Command

The return value of the procedure is returned as an XPath
string object. If the procedure resultsin an error, then an error
object isreturned.

The current implementation os TcIXSLT does not support ex-
tension elements. Future implementations of TcIXSLT will
preserve the data type of arguments. Extension elements will
be supported by passing a single argument to the Tcl proce-
dure which will be the DOM node of the extension element.
The data type of the return value will aso be preserved, with
DOM nodes being passed as node objects and lists of DOM
nodes passed as a nodeset.

5. Implications

Whereas Tcl is a very-high-level, general-purpose scripting
language, XSLT is a very-high-level, special-purpose trans-
formation language. XSLT has been deliberately designed to
not be suitable for handling all types of programming tasks.
However, in an environment where data is increasingly made
available as, or within, XML documents and where the inputs
to other processes use XML it becomes very attractive to use
XSLT in place of a scripting language. The fact that XSLT is
aWa3C standard, and supported by major software vendors on
all major computing platforms, reinforces the choice of XSLT
as the language for implementation of business, application
and presentation logic.

So thereisadesireto use XSLT as much as possible to imple-
ment an application. A major limitation to realising this engi-
neering solution isthat XSLT has few facilities for interfacing
with the "real world". The solution to this problem is to define
XSLT extensions that provide the "glue" to the external envi-
ronment. TcIXSLT's extension mechanism provides an ideal
way to overcome this problem, since Tcl has excellent inter-
faces to the various resources of a system and implementing
XSLT extensions is much easier than using C.

Another impediment to making use of XSLT is that the stan-
dard does not specify the environment in which transforma-
tions take place (nor should it). That is, an application needs a
framework to run the XSLT processor: marshalling the source
documents, supplying the parameters and disposing of the re-
sult document. TcIXSLT aso provides a solution, because an
XSLT processor can be embedded in a Tcl application: a GUI
tool, such as xmitool, or a Web server, such as tclhttpd or
mod_dtcl.

It is interesting to note how TcIXSLT makes XSLT an em-
beddable library for XML processing for the Tcl language.
TcIXSLT allows Tcl to invoke an XSL styleshest, as well as
allowing the XSL stylesheet to call back into the application's
Tcl code. This is completely analagous to the way in which
Tcl is an embeddable library for C. Previously, one might
have considered software engineering based on scripting lan-
guages to be two-tiered, with application logic implemented
using the scripting language (Tcl, Python, Perl) and low-level
components implemented using the system language (C, C++,
Java). Now, software engineering using TcIXSLT is three-
tiered, with application logic implemented as an XSL
stylesheet, lower-level components (accessible as XSLT ex-
tensions) implemented using the scripting language and fi-
nally lowest-level components implemented using the system
language. Note that other scripting languages also have wrap-
pers for libxdt (or other XSLT processors), so this phe-
nomenon is by no means peculiar to Tcl.

Figure 3. Two Tiered Application

Figure4. Three Tiered Application

6. Applications

Now that a high-performance, efficient framework is avail-
able for processing XML documents a number of applications
are being developed to leverage the TcIXML family of pack-
ages. These applications include a document authoring tool
and entry-level content management systems. xmltool is a
simple GUI application that drives XML parsers, XSL trans-
formers and comparators. Simple CMS is a more sophisti-
cated Web-based application that also drives parsing and
transformation processes, but as part of a workflow. waX Me
Lyrica (waX) is an information authoring tool that uses XML
as its underlying save format and employs a DOM tree for
editing.

6.1 waxX

The primary design goal of the waX Me Lyrical application
(waX) is to enable a document author to create and maintain
information, independent of the eventual use of that applica-
tion - whether it be for print publishing, Web publishing or
other purposes. To achieve this goal waX uses XML as the
document medium. A specific non-goal is for waX to be an
XML editor. Initially, waX is primarily aimed at supporting

authoring of DocBook documents.

Under-the-hood, waX is, in fact, a DOM-based editor. DOM
Events are used to synchronise the various GUI components.

paper.xml : InfoEdit
path: [article !! section !f para)

element-only content

8oe

T
e rwaxr

ign goal of the waX Me [yrical application (waX) is to e
tion, in of the eventual use
Ta

ic non-goa
porting authoring of DocBook documents.
nder-the- waX is, in fact, a DOM-based editor. DOM Events are used to synchronise the
various GUI components.

4 figure & »waX»

Figure 5. waX

6.2 xmltool

xmltool (fancier, more marketable name pending) is a very
simple tool for performing XML processing tasks upon XML
documents. These tasks include checking well-formedness,
checking validity, transforming documents and comparing
documents.

XML Power Tool
5L Transform

006

Check WF

| Check valid

~Wizard ——————————————Introduction-

Select Documents
Select Stylesheet
Set Parameters

Set Result Filename

This wizard-style interface will help you
transform an XML document using an X5L

Transfarm Documents
stylesheet.

[Next Stop
| S

Figure 6. xmltool

6.3SimpleCMS

The Simple Content Management System (SCMS) takes xml-
tool to the next level by adding processing workflows. Work-
flows are specified using the XML Pipeline Definition Lan-
guage, a W3C Note. The implementation of SCMS is mostly
achieved using XSLT. Currently, SCMS uses xmltool as the
host application interface but other interfaces are planned, in

particular a Web server application.

The XML Pipeline Definition Language [9] is an XML
schema for specifying how resources are processed. The rules
defining the processing workflow are contained in a "pipeline
document”. Software that interprets a pipeline document is
known as a "pipeline controller". At the heart of SCMS is a
pipeline controller.

For example, this paper, written in DocBook, must be trans-
formed into an XSL Formatting Objects (XSL-FO) document
and then the XSL-FO document is rendered to PDF. A
pipeline document that implements this workflow is as fol-
lows:

<pi pel i ne
xm ns="http://ww. w3. org/ 2002/ 02/ xm - pi pel i ne' >
<processdef nanme='transform p'
definition="org.xnl pipeline.xslt'/>
<processdef nane='format.p'
definition="org.apache. xm .fop'/>

<process type='format.p' >
<i nput nane='docunent'
<out put nane='result'
</ process>

| abel =" paper.fo'/>
| abel =" paper. pdf'/>

<process type='transformp' >
<i nput nane='docunent' | abel =" paper.xm"'/>
<i nput nanme='styl esheet’
| abel =" xsl| / f o/ docbook. xsl ' />
<out put nane='result' |abel =" paper.fo'/>
</ process>
</ pi pel i ne>

Example 11. A Pipeline Document

It is tempting to think of XML Pipeline as "Make on XML
Steroids’. The pipeline controller is expected to check
whether the target resource exists and if it does whether it is
out-of-date with respect to its dependencies. Only if the target
does not exist or is out-of-date does the stipulated process
need to be performed.

It is not possible to implement a pipeline controller using
XSLT version 1.0 done. In particular, XSLT has no way of
testing the existence of a resource and certainly no means by
which to find the last modification date of a resource. SCMS
solves this problem by providing a set of XSLT extensions,
implemented as Tcl procedures, via TcIXSLT. The goal of the
SCMS project is to find the minimum set of extensions that
allow the implementation of a pipeline controller.

7. Conclusion

The TcIXML family of packages now has three members:
TcIXML (for parsing), TclDOM (for tree manipulation) and
TcIXSLT (for transformations). TcIDOM and TcIXSLT pro-
vide Tcl wrappers for the Gnome libxml2 and libxdlt libraries
respectively. The Gnome libraries give a significant perfor-
mance boost to applications using TcIDOM, as well as pro-

viding arange of functionality.

Future work on these packages will see TcIXML/
TcIDOM/TcIXSLT version 3.0 al providing libxml2/libxslt
wrappers. TcIXML v3.0 will provide access to libxml2's SAX
interface. All of the packages will better support preserving
Tcl and XPath data types. The aim is to provide high-
performance, and eventualy for Tcl to host all aspects of
XML processing and to be able to interpose on all operations,
including parsing and resolving external entities.

Both the TcIDOM and TcIXSLT packages value-add to the
wrapped Gnome libraries. TcIDOM/libxml2 implements the
same APl as its Tcl implementation, including the DOM
Level 2 Event model. TcIXSLT incorporates a binding to the
libxslt extension mechanism, alowing XSLT extension ele-
ments and functions to be implemented as Tcl scripts.

XSLT is a specia-purpose, high-level language for handling
XML documents. TcIXSLT allows XSLT to be used for engi-
neering sophisticated applications, with Tcl providing compo-
nents and an interface to external resources and legacy appli-
cations and data. This represents a radical departure from the
traditional use of Tcl asahigh-level control language.

8. References

[1] TcIXML Project. Steve
http://tclxml.sourceforge.net/

Ball, et 4.

[2] XML Support For Tcl. Steve Ball. Proceedings of the
6th Tcl/Tk Conference. September 1998, San Diego
CA USA.

[3] eXtensible Markup Language, Second Edition. Tim
Bray (Ed). wW3C Recommendation
[http://mww.w3.0org/TR/] October 2000.

[4] libxml2, libxslt libraries. Daniel Veillard, et al.
http://xmlsoft.org/

[5] XML Path Language (XPath). James Clark, et al.
W3C Recommendation [http://www.w3.0rg/TR/]
November 1999.

[6] XS Transformations (XSL.T). James Clark. W3C Rec-
ommendation [http://www.w3.0org/TR/] November
1999.

[7 Document Object Model (DOM). Philippe Le Hegaret,
Lauren Wood, Arnaud Le Hors, et al. W3C Recom-
mendation [http://www.w3.0rg/TR/] November 2000.

[8] Smple API for XML (SAX). David Megginson, XML-
DEV mailing list. http://www.megginson.com/.

[9] XML Pipeline Definition Language. Norm Walsh, Eve
Maler. W3C Note [http://www.w3.0org/TR/] February
2002.

http://tclxml.sourceforge.net/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://xmlsoft.org/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.megginson.com/
http://www.w3.org/TR/
http://www.w3.org/TR/

