An Interactive Compiler Development System
Gary S. Tyson, Robert J. Shaw and Matthew K. Farrens

Division of Computer Science
University of California, Davis, CA 95616
email: tyson@cs.ucdavis.edu, tel: (916) 752-7004

Abstract capabilities of this architecture. This paper briefly discusses
one of these tools, 1aGO, which provides an interacti
compilation environment used tow@op prototype code
optimization strategies for MISC and othemnarchitec-
tures.

An interactive compilation eronment has been
developed to facilitate the rapid prototyping of rhate
dependent code optimization attgies for the Decoupled
Processor Design prect under development at Uniséy
of California, Davis. This paper describes an intative The MISC architecture uses multiple asynchronous
graphical optimizer based on the Tcl and Tkdities. An processing elements to separate a program into instruction
owverview of the optimizer is msented along with some streams that can bexeeuted in parallel. Unlike aher

motivation for the unique features itoprdes. MIMD * architectures, MISC has been designed to separate
_ a task into multiple, finely interle@d instruction streams
1. Introduction which cooperate toxecute a sequential task; this is the

The deelopment of high performance architectures same ILP exploited by Superscalar architectures such as
requires considerable interaction between the architecturd?EC’s Alpha processor [Site93]The partitioning of the
specification and the machine specific optimizations pertask requires the compiler to identify both independent and
formed to exploit the capabilities of the architectuftiese ~ dependent operations and to assign them to different pro-
optimizations often expand on more general technique§€ssing elements. The separation of instructionspioie
found in current compilers [StalHowever, few ols eist ~ ILP is a relately new strategy and compiler support is
to aid in the integration of meand existing optimization Unaailable. laGOallows nev optimization strategies to be
techniques_ & have da/eloped anlnteractive Gaphica| attempted with minimal delay and with much greate(i-ﬂe
Optimizer (IaGO)to facilitate the construction of a high bility than current optimizers — which generally use com-
performance code optimizer for metarget architectures. Mand line aguments to specify which optimization tech-
This system allws for much greater control of the applica- Niques should be triedAmong the questions that we wish
tion of optimization techniques by incorporating a Tcl basedi© study are optimal strategies for instruction stream separa-
script language into the code optimizen addition, the use tion, tradedfs in register allocation and instruction schedul-
of Tk to generate an interaati interface between the com- ing, and methods for hiding operational latencies by con-
piler developer and the internals of the optimizer allows for trolling the asynchronous entry of processing elements into

new code optimization strategies to be applietthe fly basic blocks.
o [aGO provides tw key alvantages wer aternatve
2. Motivation compiler models. First, the application and ordering of

New high performance architectures are currently Optimization methods can be specified by a command script,
being deeloped at numerous urdrsity and corporate allowing alternatre £hemes to be attempted withougee-
research centers. At UC ia, we are imestigating nev erating the compilerThis is important because the relation-
architectural approaches thatpeoit the implicit Instruc- ~ ship among code transformations is corrzied the eflects
tion-Level Rarallelism (ILP)found in cowentional sequen- of architectural dependencies cartlade particular trans-
tial programs (in our case,C source programs).The formations or particular orderings of optimizationSec-
increased capacity found in thesevraechitectures requires ond, with the use of Tk, the compilervé®per can interact
more sophistication on the part of the compiler to realize atith the internals of the optimizer during the compilation
improvement in performanceGenerally the more comple ~ Process. Codecan behand optimizedby allowing the
the architecture, the less applicable current compiler techdeveloper to manipulate the internal representation of the
nology becomes in the generation of efficient cotde ~ Program (e.g. rewrite the intermediate language program
have cevdoped a set of tools to facilitate the design anddescription or modify datafte information). Thisallows
analysis of theMultiple Instruction Stream Computer _ _ _
(MISC) [TyFP92] architecture and simplify the construction * Multiple Instruction / Multiple Data
of new optimization stratgies suited to the unique

new optimization strategies to bevatuated without the during the compilation process, a shell script is provided to
necessity of coding them in C or as an optimization script. the interpreter in addition to grcommand line ayjuments
(provided by the dxier program). Normaloperation of
laGO starts with a series of commands (specified by the
script file) to load the intermediateTR description of the
program, perform dataflo analysis to construct a depen-
dengy graph and apply whiclver optimization transforma-
dions to the code are specified by the script. Once optimiza-
tion is complete, instruction scheduling is initiated to gener
ate a final object (assembly code) listing of the program.
gl he driver program can continue with assembly and linking
phases if requested.

3. Compiler Overview

Once we decided to ddop a compiler model for
MISC, a study was made of existing compilers andvérg
portable C compiler (vpcc)BeDa91] was chosen as the
base model for 1aGO. The design of vpcc, ongoing at th
University of Virginia, is an rtension of the portable C
compiler deeloped at Bell Labs. The vpcc compiler is sep-
arated into tw phases: the parser or front-end and the cod
optimizer or back-end (see figure 1).

4. Optimization Script Language

The first component of the 1aGO system is an 1aGO
command shell. This command shell is simply a Tcl inter
preter augmented with optimization and display routines.

() ()

Front End Back End (IaGO)

Lexical Analysis

Semantic Analysis
Code Generation

Tcl Shell

Internal

Data-flow
Analysis

Optimization
Routines

Command line arguments reead from the compilation
driver determine the location of the 1aGO script controlling
the optimization processThis will usually irvolve pecify-

ing an 1aGO command script on the vpcc command line.
Application of optimization routines is controlled by the

script; RIL files will be opened, contents read, optimiza-
tions performed and assembly code generated Jmkiimg
various Tcl and 1aGO procedures. An interaetghell can
Display also be specified for simple textual interaction between
Routines 1aGO and the deloper.

Most 1aGO routines operate on a global RTL depen-
deny graph; allcode translations maintain the same inter
J nal format, so there is no required ordering of optimization

operations. Thiprovides the command script with (almost)
Object complete freedom in scheduling code translatidnsaddi-
Code tion to the optimization routines, 1aGO registengesal data
Figure 1: Overview of the vpce/laGO compiler corversion routines to alw access to the internal data
structures by the command interpretérhis allovs the
command scripts to access internal structures as srell v
ables and to determine controhMi@f the optimization pro-
Tess accordingly The 1aGO command language then has
the full programmability found in the Tcl languagkera-
tion can be performed to control the application of aeh
the optimization (or dataflo analysis) routines. More
aggressie <heduling of transformations can then be

mdachlned spe;nﬁed II? a rgac;l’ne |r|1de;penddent fOI_’fhl'S attempted without sacrificing correctness of target code or
indepen ent.orm aflows at. analysis an manopti- determination (guaranteed compiler optimizatitermina-
mization routines to operate in a machine independent manon)

ner Once an RTL description of the program is generated,
it is written to a file and the optimization phase is initiated.
A compilation driver program is responsible for coordinat-
ing the &ecution of the parts of the compiler — including
pre-processing, assembly and linking operations.

RTL

Code Expander

\ 7 \

Dependency

Graph

Instruction
Scheduling

000000

The front end of the compiler parses C source cod
and generates na (out correct) code for a simple abstract
machine Abs-code). The code epander translates the
abstract machine code inRagister Tansfer Lists (RTLS)
an RTL is a machine specific representation for thgetar

5. Interactive Optimization

Another useful capability of the 1aGO system is its
ability to interact with the compiler deloper to generate
more efficient code or to delop nev optimization tech-
liques. Amenu dwen graphical interface can be created
(from the 1aGO command shell) to provide detailed infor
mation about the internal state of the optimization process
and to accept commands input by theetgper.

The second phase of the vpcc compiler has been mo
ified to support 1aGO. 1aGO consists of a Tcl interpreted
shell, a set of routines to perform dateflanalysis, code
optimization and graphical displayVhen 1aGO is imoked

When using this graphical intexfe, the structure of optimization process directlyThe compiler performs the
the program is viewed as a set of basic blodpecified in computations it does best (e.g. depengeatalysis and
RTL format, displayedh Tk listboxes. ControFlow is dis- global register allocation), while the programmervimes
played as directed arcs between the basic block (on a Tte advice that the sofawe can not determine with certainty
carvas). Thisrepresentation of control focan be aug- (the absense of pointer hazards and function sidets}.
mented with information gearding data dependenciesgre 1aGO allows the programmer to communicate higbes
ister usage or highenld semantic structures such as loops. aspects of the program design to the compiler — aspects
Mary of the display characteristics can be specified by thavhich are all but invisible at thevd of basic blocks and
command shell allowing more of the internal representatiorRTLs. Again, the fact that detailed architectural kedge
to be viewed. is required to use laGOfettively in this way is not a dra-
The primary mechanisms for direct manipulation of Pack because such knowledge is neededvay by the
the compilation process are Tk menus and a text editoPPlication tuners working on high-performance platforms.

Dataflov modifications are made by manipulating the items Because of the ease of programming that Tcl pro-
on the camas. RTLs can be directly manipulated byok- vides, seeral additions to laGQ®' dsplayed information are
ing a text editor on the RTL representation of the code in gossible, all of which seevto enrich the nature of this bidi-
basic block. This interaction between the compilerede rectional programmer/compiler interaction. An vius
oper and the optimization routines allows for more sophisti-extension is to include profiling information so that the pro-
cated transformations to be applied. Compilergehldtle grammer sees clearly which basic blocks are crucial to high
difficulty with applying global transformations (e.global performance. Similarlyvommon compiler notions such as
register allocation or code motion) across the entire scope dfve ranges, natural loops, and use-def chains are all easily
a function. Peopléhave far more difficulty applying these incorporated into 1aGO, allowing the programmer to- per
types of transformationsHowever, people are proficient at form high-level code reoganization to promote the com-
determining semantic information about the application.piler’'s ill at code motion and register allocation.

This often allows human intervention teoad overly con- laGO has displayed great benefit in theetpment
servatve cheduling decisions by the optimizeAn exam- ¢ by gntimization stratgies for the MISC processoive

ple of this is the analysis required to guarantee that no meMygia/e hat the capabilities found in an interaetiompila-

ory (aliasing) hazards exist in the scheduliiten a person iqn environment can be applied to a more general field of
can provide this guarantee byaenining the application programming. Oncéhe deelopment of 1aGO has matured

when the compiler cannot guarantee this with a detaileq, jis esting configuration, we wish to port it to a compiler
analysis of the \ levd semantics found in the intermediate with greater wailability such as gcc.

code.

The ability to quickly gauate nev optimization References
stratgjies by interactiely applying transformations pvales
the compiler decloper with a powerful tool for studying the [BeDa9l]

X o g M. E. Benitez and J. WDavidson, “Code
underlying characteristics of advanced architectures.

Generation for Streaming: an Acces®Ente
Mechanism”, Proceedings of the darth
International Confeznce on Achitectural
Support for Pogramming Languges and
Opemting SystemsSanta Clara, CA (April
8-11, 1991), pp. 132-141.

6. Future Research

Although we hae pesented 1aGO as a compiler
writer’s tool, it can be applied to mgrmother programming
projects with only modest alterationszor instance, the
multiprocessing community accepts that a truly general-
purpose parallel architecture will vee exist, and conse- [Site93]
guently the programmers of such machines must become
intimately familiar with their particular architecturedt
they do mot, they fail to harness the full peer which the

R. L. Sites, “Alpha AXP Architecture”,
Communications of theGM, vol. 36, no. 2
(February1993), pp. 33-44.

machine has to tdr. Even today in supercomputer centers [Stal] R.M. Stallman,Using and Porting GNU CC
such as the harence Lvermore National Laboratory Free Software Foundation, Inc. 1991.
efforts to fine tune applications consume a large portion OETyFP92] G. Tyson, M. Farrens and A. Pleszkun,

the programming professionalorithese individuals, a tool
such as 1aGO would allomuch greater interaction between
the compilation model and themselves. Rather than a one-

“MISC: A Multiple Instruction Stream
Computer”, Proceedings of the 25th Annual
International

way corversation with the compiler through compiler direc-
tives enbedded in some parallel dialect of Fortran or C,
[aGO would allev the programmer to interact with the

Symposium on
Microarchitecture Portland, Orgon
(December 1-4, 1992), pp. 193-196.

