any of the events. This is in contrast to domaineusly users had to rely on using debuggers such
specific monitors like the parsing monitoras GDB or Dbx on the Eli-generated code. This
described in Section 3 which placed a semantieequired extensive knowledge of the internals of
interpretation omecognition events. this code which was either unavailable to most

Figure 5 shows the breakpoint monitor after thé! USErS Or time-consuming to obtain and soon
éJt-of-date. Noosa allows developers of tools

first example breakpoint above has been set. TR

user has to named the breakpoint “Line aftered in Eli to build monitoring interfaces that
five". Breakpoints can also be disabled o'Jsolate monitors (and hence users) from the
deleted using this interface details of their tools. It is now possible to moni-

_ _ _tor Eli-generated programs at the level of user
Figure 6 shows the user in the process of settingyecifications rather than generated code. Appli-
the second breakpoint. The documentatiogation to other problem domains is showing that

strings from the Dapto specification are disthe techniques have general applicability and
played as aids. The text window is used to insegitility.

the handler code. A similar interface allows

breakpoints to be altered. References

The default mode of the monitor (not shown) is

to have the “Expression Handler" checkbuttor{l] B. Plattner, J. Nievergelt. Monitoring pro-
on. In this mode the user can just enter a T@ram execution: a surveyComputer 14(11),
expression for the breakpoint condition moredages 76-93, November 1981.

closely approximating traditional breakpomt[z] A M. Sloane. Domain-level execution moni-

facilities. The monitor WI.|| wrap the following toring. Ph.D. Thesis, University of Colorado,
code around the expression to form the handler

Boulder. 1993. In preparation.
if expressi on
{ returpn 1: H [3] R. M. Stallman, R. H. Pescilhe GNU
} ’ source-level debuggefFree Software Founda-

_) tion. 1993.
Other generic monitors have been constructed.

Time and frequency profiles were built using[4] M. A. Linton. The evolution of Dbx.
event timestamps and counts. Similarly, eventty SENIX Summer Conferencpages 211-220,
transcripts are easily obtained and are useful H990.

some monitoring situations. [5] M. H. Brown. Algorithm animation The

MIT Press, 1986.

46] J. K. Ousterhout. Tcl: an embeddable com-
monitoring environment to be constructed in mand languagelJSENIX Winter Conference.

short period of time. Using Tk to build thealggo'

graphical interfaces to monitors permitted pref7] J. K. Ousterhout. An X11 toolkit based on

sentation ideas to be prototyped quickly. Havinghe Tcl languageUSENIX Winter Conference.
Tcl as the basis of the event and data operatiorpo .

mechanisms has resulted in a simple but power-

ful facility. Although detailed performance anal-[8] R. W. Gray, V. P. Heuring, S. P. Levi, A. M.
ysis is yet to be conducted, Noosa operates fagtoane, W. M. Waite. Eli: a complete, flexible
enough to enab'e monitoring to be done eﬁeccomp”er construction SyStem. Communications
tively. There is room for improvement in the Of the ACM, 35(2), pages 121-131, February
event generation process. 1992.

5 Conclusion

Tcl and Tk have enabled an extremely flexibl

The Eli monitors have greatly improved the[9] R. E. Griswold, M. T. GriswoldThe Icon
development process for Eli programs. PreviProgramming Languagérentice-Hall. 1983.

: File Help

property_set Line after five
recognition
sourceinit
stopped
string_stored
token

tree

Ll
Figure 5. Noosa Breakpoint Monitor

bpt2

recognition

Recognition of a production during parsing

prod Index of production :
uses Number of preceding recognitions subsumed
lineheqg Line number of heginning of extent
colbeg Column number of beginning of extent

lineend Line number of ending of extent

colend Column number of ending of extent

Hame: Ereakpoint 2

global last

set ret (Sprod == 12 &% $last ==1)
set last Sprod

return Sret

[.ZExpression Handler

Create Breakpoint| :Cancel

Figure 6. Setting a Breakpoint

event recognition “Recognition of a production during parsing”
(int prod “Index of the production”,
int uses “Number of preceding recognitions subsumed”,
int linebeg “Line number of beginning of extent”,
int colbeg “Column number of beginning of extent”,
int lineend “Line number of ending of extent”,
int colend “Column number of ending of extent”);

operation get_conc_prod “Retrieve text of a concrete production”
(int index “Index of the production”): str

{
extern char *conc_prods];
sprintf (interp->result, “%s”,conc_prods[index]);

}

Figure 4. Monitoring I nterface for Parsing Monitor

build a string scanning monitor for the Icon pro-dler for recognition events will cause exe-
gramming language [9]. Currently a monitor forcution to stop as soon as a piece of text past line
memory leaks in C programs is being confive is recognized:

structed. Details of these monitors will appear ine {$linebeg > 5} {return 1}

[2].
Because handlers execute in a full Tcl interpreter
4 Breakpoints in the subject they can use any Tcl facility. For

. . . . example, they can use global variables to com-
Execution control in conventional debugglngmuniCate For example, the handler:
systems is performed vimeakpointg3,4]. Each ' ' '

breakpoint is associated with a source code loc&et ret 0

tion and possibly other information such as conif {$prod == 12 && $last == 1} {

text conditions or counts. A breakpoint triggersset ret 1

when its location is reached during executio

and (say) the condition is true or decrementinge€t last $prod

the count yields zero. Data breakpoints are varfeturn $ret

ants that a_IIow c_:onditions to be implicitly testedyij| cause a stoppage whenever production
at all locations in the program at once. Usuallfye|ve is recognized immediately after produc-
when a breakpoint of any kind triggers, execUtion one. Similar techniques can be used to
tion is stopped or a sequence of user-defineg,nlement temporary breakpoints that can only
debugger commands are executed. be triggered once, or counting breakpoints that
The Noosa system can be used to providare triggered after a set number of times. Data
sophisticated breakpointing capabilities.breakpoints are trivial providing the monitoring
Because Noosa is designed to hide the sourdgierface includes an event that represents
code of program components from monitors it ishanges to the data of concern.

r}ot possible to attach preakpoints to source Ioce}-0 simplify the setting of breakpoints, Noosa
tions. Ins_tead breakpoints are attached to eveBFovides a generic breakpoint monitor
types giving them an abstract feel. (Figure 5). A generic monitor is one that does
Breakpoints can be achieved by specifying evemot depend on the semantics of events or data
handlers that return one. Recall that execution afperations. The breakpoint monitor lets users
the subject is suspended if any of the handlerspecify arbitrary handlers for events. The moni-
for an event return one. Thus the following hantor itself has no knowledge of the meaning of

Figure 3. Eli Par

3.1 Monitoring Interface

The Eli parser generators have been modified {8 "€¢09nition

: FIIE (8.29) HEIp
$STHRT_SYHBDL . StandardBlock .
EStandardBlnck : Prngram
{Program : ‘program’ Programifame *;° BElockBody ©. ¢
{ElockBody : ConstantDefinitionPart TypeﬂeflnltlnnPart WariableDefi
{CompoundStatement : ‘hegin’ Statements ’end’
{istatements Statements *;° Statement .
{Statements statements '’ Statement .
JWhileStatement : ‘while’ Expression "do’ Statement .
{statement : CompoundStatement .
JCompoundStatement : ‘begin’ Statements ‘end’
{Statements : Statements ';° Statement .
{istatements : Statements ' ;¢ Statement .
{Statements : Statements ';’ Statement .
{:statements Statements ;" Statement .
{WhileStatement : ‘while’ Expression ‘do’ Statement .
JIfStatement : ‘1f’ Expression ‘then’ Statement ‘else’ Statement .
{azsigrmentStatement : Variabledccess *:=' Expression .
{Variablebccess : VariahleNameUse
{VariahleNameUse : Name .
{:Mame ‘Name* .
{End of production list.
{program GCD;
{ivar
] =y integer;
{hegin
{iread () ;
{iwhile x<:0 do
1. begin read{y);
while x<>y do if x>y then J: =x-y else v:=y-x;
write () ;
readix) ;
end;

sing Monitor

The handler used by the parsing monitor to react
events is:

provide a simple monitoring interface that supnsend parse_recog $prod $uses \
ports the parsing monitor. These changes repre-gjinebeg $Eo|beg $lineend \
sent less than one per cent of the code of eachgcolend

tool.

A recognition event is generated whenever
a piece of input text is recognized. Also
get_conc_prod operation provides access to

%arse_recog

This simply sends the attribute values to the
monitor where the Tcl procedure
stores them for later use.

the productions in the concrete grammar used ©Other monitors have been built dealing with the

generate the parser. The complete Dapto speci

following aspects of Eli-generated programs:

cation for this interface is given in Figure 4. Thestring storage, lexical analysis, name analysis,

implementation ofget_conc_prod uses a

message generation, scoping, symbol table

table of productions produced by the parser gempaintenance, and semantic analysis (attribute
erator. In Figure 4 quoted strings are used fogrammar monitoring). Domains other than Eli

documentation purposes (see the next section)

have also been investigated. Noosa was used to

2.4 Dapto 3 Parsing Monitor

Dapto is a tool that largely automates the generia:-Ii [8] generates compilers from very high-level

tion of the domain-specific code for a subject. | b
is used by the implementor of a reusable Compda_pemflcatlons of their functionality. Eli incorpo-

nent who must design the monitoring interfacd®€S twWo LALR(1) parser generators. This sec-
for the component. tion briefly describes a monitor for the

components generated by these tools. Because

Dapto takes a specification of the MonNitoring, e 1 onitor communicates with the components

interface of a component and generates the N%ia a well-defined monitoring interface it is able

essary code to implement event generation far . ;
events in the interface and interfaces to its data work with the outputs of either of the tools.

operations. Event types are specified by givingasing is the process of determining the struc-

their signatures, that is, the name .Of the_eve%re of an input text given a stream of tokens
type, and the names and types of its attrlbute§r

. . . m that input text produced by a lexical ana-
Data operations are given by their signatures ar]do P P y

their bodies. The latter are arbitrary fragments of 2" Eli allows text structure to be d_escrlbed_ by
context-free grammars. The parsing monitor

C code to implement the operation. Normally th lationshio bet textf
this C code accesses program data structureselgowS € refationship between a context-iree

implement the operation. Section 4 contains aff@mmar and a given input text to be monitored.

example of a Dapto specification. '(;his aIIO\(/jvs incorrect structuring to be easily
o . iagnosed.

From a monitoring interface specification Dapto g

generates the following: Figure 3 shows a typical view of the Eli parsing

1. A C implementation of theyenerate t monitor constructed using Noosa. Selecting a

function for each event type. These func- location in the input text (lower text window)
tions store the values of the event attributes inauses the upper text window to display the con-
global Tcl variables, call the event handlerdext-free productions (if any) that were used to
and either return to normal program executiomecognize that text location. In this case the high-
or suspend execution depending on the retullightedx identifier was selected.

values of the event handlers.

Displayed productions range from most general

2. C implementations of a Tcl command proce-

dure for each data operation. The implemen@t the top to most specific at the bottom. Thus the

tation of an operation consists of the C codgrSt production displayed is the root of the gram-

provided in the specification augmented witHMa" The others represent a path in the parse tree

a generated test to check the validity of it§fom the root to the most-specific node repre-
argument list. senting the selected location. In this case the pro-

L . . ductions identify thex as aName inside a
3. Initialization code to install the data OperatlonVariabIeNameUse contained in aVari-

command procedures into the subject’s inter- :)
preter as primitives. ableAccess in an AssignmentState-

_ _ ment and so on. The underlined symbols in all
4. Tcl code representing a database of informast the |ast production denote the left-hand side
tion about the monitoring interface. This C°desymbol of the next production. For example, the

is loaded by the frontend and enables it t¥statement shows that the following
decide which monitors are applicable to aAssignmentStatement is in the then-

;ubject _and lets monitors display mterfacecléluse rather than these- clause.
information (see Section 4).

The C code generated by Dapto is compiled witfelecting a production instance in the upper win-
the regular code for the program to form an exedow will highlight the extent in the input text
cutable for the subject. that was recognized by that production instance.

| File Monitors

hot running

Program : . /words words. 1nput
Database: iconscan. db

Set Datahaseg Run E Einpibnug E i

Figure 2. Subject Control Window

monitors and are executed by the subject. Opertype and is executed whenever events of that
tions can access or update program data. type are generated. The values of event attributes

The set of events and data operations support&€ available to each handler as global Tcl vari-
by a component form itmonitoring interface ables. If necessary, handlers can send messages

The monitoring interface of a program is thel® Monitors usingisend enabling displays to

union of the monitoring interfaces of the compo P& UPdated and so on.

nents from which it is constructed. To enable monitors to control the execution of

fhie subject, the return value of a handler is used

to determine whether or not execution should

) _ _ - continue after the current event generation. If

1. Even_t generat_lon sites must be |dgnt|f|ed angny of the handlers for an event return one, exe-
function calls inserted at those points t0 gengytion is stopped at the event generation site. If
erate appropriate events. For an event type g)| pandlers return zero, execution continues.
a function generate_t_ is provided. Its \when execution stops, a synthetitopped
arguments are the attributes of the event typgyent is generated by the subject. This event can
(if any) and are used to distinguish betweehaye handlers associated with it just like
instances of a single event type. domain-specific events.

2. The program must be linked with extra codayjle execution is stopped, data operations can
containing: a Tcl interpreter, implementa-pe jnyoked by monitors. Each operation is
tions of thegenerate_* functions, and present as a Tcl procedure within the subject.
implementations of the data operations. Nsend is used to transmit a call of an operation

Event generation sites must be identified byo the subject. Once in the subject the call is exe-

hand. Since the target software for Noosa isuted and its value is returned to the calling

based on reusable component libraries, the costonitor. Implementations of data operations are
of site identification within a component can begiven as arbitrary C code (see the next section),
amortized over many uses of the component. 180 any program data can be accessed.

other settings tools such as compilers can autgy,q synthetic event®it andfinit are gen-

Two changes to a program are necessary to tu
it into a Noosa subject:

matically insert event generation. erated by Noosa when the subject starts and fin-
) o ishes execution, respectively. They enable
2.3 Monitorsand Monitoring Interfaces monitors to perform initialization and finaliza-

Monitors interact with the subject solely throughtion for each subject run.
monitoring interfacesEvent handlerscan be

installed in the subject by monitors to enable

reactions to events. Each handler is an arbitrary

piece of Tcl code that is associated with an event

Monitor 1

Monitor 2

Monitor N

Frontend

Figure 1. Noosa Architecture

The paper concludes with a brief consideratio®oth the subject and the frontend contain Tcl

of the efficiency and usability of the system. interpreters. A primitive calledsend is used to
transmit an arbitrary piece of Tcl code in either
2 Noosa direction and return the result of evaluating it.

he functionality ofnsend is the same as the
k primitive send but a named pipe implemen-
tation is used instead of communication via the
server.

Figure 1 shows the top-level architecture of.-::
Noosa. The programmer interacts with thomn-
tendto select appropriate monitors and interact
with each monitor to specify desired monitoring
operations. The monitors in turn interact with the

subject during execution to implement those2.2 The Subject

operations. . :
When the subject is initially run it executes nor-

The main window of the Noosa frontend ismally except for event generation. Events are
shown in Figure 2. Immediately below the meny,se(to convey state change information to mon-
bar the current status of the subject is displaye¢ors and may be generated at arbitrary points
The “Program” entry sets the current programyjyring execution callegvent generation sites

name and any command-line arguments that afhe possible events and their semantics are not

to be used when it runs. The “Database” entrgonstrained by Noosa; they are chosen to match
sets the Noosa database for the program (S@ problem domain.

Section 2.4). The “Monitors” pull-down menu
allows the user to create instances of availablélthough events are theoretically enough to con-
monitors. vey the complete state of the subject to the mon-

Three buttons give the user control over the exdors, S_UCh an approach is impractical. In_ many
cution of the subject. “Run” starts a new subject‘?ase_s it would bg necessary for the _monlltors .to
“Continue” allows continuation from a stoppagedUp“Cate the entire state of the subject just in

(see Section 4). The subject can be terminatetfSe the user might be interested in some of it. In
with the “Kill” button. practice the user is only interested in a small por-

tion of available information, so much work can

2.1 Communication be wasted.

All communication between the subject and théNoosa useslata operationdo augment events.
frontend is performed at the level of Tcl code.These are arbitrary routines that can be called by

Noosa: Execution Monitoring using Tcl and Tk

Anthony M. Sloane

Department of Computer Science
Campus Box 430, University of Colorado
Boulder, CO 80303-0430, USA
tony@cs.colorado.edu

Abstract nents from each other. A component’s functional
interface allows other components abstract

Execution monitoring is the observation of Baccess to its algorithms and data structures.

program while itis running. pebugglng and Ioro'Implementation details such as data representa-
filing are two commonly applied forms of execu-,. o . .
tions or specifics of algorithms are hidden

tion monitoring. This paper describes experiencB) : :

: . ehind the functional interface. Components are
using Tcl and Tk in the .developrr.len_t of NOC)Sathus able to evolve more independently than
an event-based execution monitoring systen{hey could if such details were visible
We present an overview of the system concen- '
trating on aspects that involve Tcl and Tk. Ofrne central idea in Noosa is to isolate execution

particular interest is the flexibility achieved by ,onitors from the details of the implementation

using Tcl as the basis of both the event languagg the subject of the monitoring. This separation
and the communication between the monltorln%imp”ﬁeS monitors and insulates them from

subject and the monitors themselves. most changes in program components. We

. definemonitoring interfaceghat are analogous

1 Introduction to functional interfaces except that they hide

Execution monitoring [1] is a vital part of any component implementations from monitors

software development process. Current technofather than from each other. In an implementa-
ogy does not permit us to construct compleion the two kinds of interfaces may be imple-

software that is guaranteed to work the first timénented using the same or different mechanisms.
it is run. Even once a program performs its funcNoosa implements them differently because the
tion correctly, it may not (say) perform it quickly subject and the monitors reside in different oper-
enoughDebuggings a form of execution moni- ating system processes.

toring concerned with observing execution from . : :
the point of view of correctnesprofiling con- Tcl [6] plays a central role in the |mplementat|on_
siders execution with an eye on usage off Noosa over and above the fact that the moni-

resources such as processor time or memoFgrS are built using Tk [7]. Section 2 describes
space the architecture of Noosa and explains how Tcl
is used to provide powerful modes of interaction

Noosg[2] is an execution monitoring environ- payyeen the monitors and the subject. Section 3
ment designed for software constructed fromy,sirates this discussion with an example of a

reusable componentdloosa unifies ideas from parsing monitor constructed for the Eli compiler
conventional debugging systems [3,4] and alg0zgnstryction system [8]. This is an example of a

rithm animation [S]. domain-specific monitom monitor that provides
We concentrate on software constructed usinfacilities for programs operating within a partic-
reusable components such as abstract data strutar problem domain. In Section 4 we give an
tures, instances of abstract data types a@xample of ageneric monitorthat implements
instances of classes. This kind of software utibreakpointing. Generic monitors are indepen-
lizes functional interfacesto insulate compo- dent of the domain in which the subject operates.

