
development effort for OBST applications and by
opening the way to functionality already avai-
lable as Tcl extensions, most notably Tk and rela-
ted tools. With tclOBST the full power of OBST
is provided for convenient and explorative use in
an interpretative environment.

In terms of generality, development effort,
and the ease with which tclOBST can be combi-
ned with other functionality using a Tcl/Tk infra-
structure, tclOBST is unique compared to the
interactive interfaces offered for other object-ori-
ented database systems [8].

Tcl/Tk proved to be an almost ideal basis for
the described development effort. Its probably
greatest asset is difficult to quantify: the experi-
ence that things fit together well and that solu-
tions are accomplished fast and work well.

With larger tclOBST applications in mind, it
might be about time for the Tcl/Tk community to
reach consensus on larger grained programming
abstractions than Tcl procedures.

References

[1] S. Delmas,XF - Design and Implementation of a
Programming Environment for Interactive
Construction of Graphical User Interfaces, Master’s
Thesis, Technical University of Berlin, Institut für
Angewandte Informatik, March 1993.

[2] A. Lampen,Advancing Files to Attributed Software
Objects, Proc. Winter USENIX Conf. 1991, pp. 219-
229.

[3] C. Lewerentz, E. Casais,STONE: A Short Overview,
STONE Tech.Rep. FZI.40.1, Forschungszentrum
Informatik (FZI), Karlsruhe, May 1992.

[4] J. Ousterhout,Tcl: An Embeddable Command
Language, Proc. Winter USENIX Conf. 1990, pp.
133-146.

[5] J. Ousterhout,An X11 Toolkit Based on the Tcl
Language, Proc. Winter USENIX Conf. 1991, pp.
105-115.

[6] B. Schiefer,An Environment for Supporting Schema
Evolution in Object-Oriented Databases, Tech. Rep.,
Forschungszentrum Informatik (FZI), Karlsruhe, in
preparation (in german).

[7] C. Schürmann,How to use the OShell in STONE,
STONE Tech.Rep. FZI.48.0, Forschungszentrum
Informatik (FZI), Karlsruhe, October 1992.

[8] V. Soloview, An Overview of Three Commercial
Object-Oriented Database Management Systems:
ONTOS, ObjectStore, and O2, SIGMOD Record,
Vol. 21, No. 1, March 1992, pp. 93-104.

[9] D. Theobald,The Design of a Tcl Interface to OBST,
STONE Tech.Rep. FZI.47.1, Forschungszentrum
Informatik (FZI), Karlsruhe, April 1993.

[10] J. Uhl, D. Theobald, B. Schiefer, M. Ranft, W.
Zimmer, J. Alt,The Object Management System of
STONE - OBST Release 3.3, STONE Tech.Rep.
FZI.27.2, Forschungszentrum Informatik (FZI),
Karlsruhe, March 1993.

Appendix: How to get OBST / tclOBST

The current version of OBST and OBST appli-
cations such as tclOBST are freely available via
anonymous ftp fromftp.fzi.de (141.21.4.3), di-
rectory/pub/OBST/OBST3-3.

The directory /pub/OBST/OBST3-3/psfiles
holds postscript versions of the documentation
which is as well contained in the distribution fi-
les.



3. Status and Future Work

Since the first release at the start of this year, a
number of small applications were implemented
based on tclOBST. tclOBST was furthermore
used for prototyping and testing OBST code
which was later on transfered to C++. These
translations required only minor effort if Tcl
specifics such as sophisticated string manipulati-
ons were used only sparsely.

Although we conducted no comparative stu-
dies, we feel development times to be significant-
ly shorter based on experiences with previous
C++ implementation tasks. This does in particu-
lar hold if the application includes a graphical
user interface (e.g. a graphical browser for OBST
meta data).

Some benchmarking results and usage expe-
riences showed the overhead incurred by
tclOBST - in comparison to programming an
OBST application in C++ - to be acceptable and
in most practical cases not even noticeable. Ho-
wever, this required substantial additions to the C
interface described above for caching OBST
meta data and hence reducing database lookups.

meta
data

application
data

OBST data base

application script

Figure 3 tclOBST application

OBST
library

application
library

tclOBST

Tcl/Tk library

The total development effort for tclOBST was 3
person months, in which most time was spent in
deriving the conceptual mapping of the OBST
data model and implementing the C interface -
the actual embedding in the Tcl framework took
about two weeks.

Currently, tclOBST has reached a rather sta-
ble state and work is under way to implement lar-
ger applications based on it, e.g. a support
environment for the evolution of OBST database
schemas [6]. tclOBST will also serve as a base
component for the integration of heterogeneous
object bases: OBST and AtFS, an object base for
file objects [2]. Integration will be achieved by
drawing on existing Tcl embeddings for both ob-
ject bases, i.e. OBST by tclOBST and AtFS by
another interface called tclAtFS. On top of these
there will be an integration layer implemented in
Tcl (see fig. 4).

4. Conclusion

We presented the architecture of tclOBST, a Tcl
interface to the OBST object-oriented database
management system, as well as some experien-
ces. The interface significantly raised the usabili-
ty of OBST by considerably reducing the

AtFS
tool

OBST
tool

tclAtFS tclOBST

AtFS
object
base

OBST
object
base

common
tool

integration layer (Tcl)

Figure 4 heterogeneous database
integration with tclOBST



oriented way - as required by Tcl: The object
structure is traversed by invoking the attribute ac-
cess methods until a scalar value is reached. This
value can then be converted into its string repre-
sentation and vice versa.

A prerequisite for implementing such a tra-
versal in a generic fashion is the meta protocol of
OBST which does not only make the description
of OBST types available, but does also provide
access to the associated code, i.e. the implemen-
tation of methods and conversion operations for
scalar types.

2.2 Architecture of the Interface

The intended interface has to be complete in the
sense that any data described in the OBST data
model can be handled. It should furthermore be
generic in that no recompilation of tclOBST is re-
quired to handle newly defined OBST types. In-
stead, it should be sufficient to link with the code
associated to those types.

tclOBST was built in a three layered ap-
proach: the first layer is made up of the OBST li-
brary, the second layer is a C interface which
embedds OBST in C, and the third layer is the
actual embedding in Tcl. Here, we only present
the most important aspects of this interface. A de-
tailed description can be found in [9].

The C interface basically provides an opaque
handle type2 which can refer to any OBST object,
two functions to invoke methods specified by
name, and a means to capture errors raised by
OBST - in particular type errors.3 Furthermore,
there are accessor functions to the part of the
OBST library for which there is a C++ interface
but which is not expressed in the OBST data mo-
del. Additional support is provided for the data
container classes of the OBST library such as
Set, List, ...

The C interface is as well generic as comple-
te in the above sense. It is generic, since there is
a fixed set of functions and types which suffices

2. This opaque C handle is a fixed size byte array.
3. A type error will in particular be raised and caught
when trying to invoke a method which is not defined
for a given object.

to handle any data which is defined in the OBST
data model.

These properties of the C interface carry over
to the Tcl embedding which defines operations to
convert between C object handles and Tcl object
handles. These Tcl object handles are fixed size
identifiers which do not incorporate process spe-
cific data and may hence be used across process
boundaries. The accessor functions and container
class support of the C interface are mirrored by
Tcl commands, in particular a loop command for
scanning such container objects.

Furthermore, a Tcl command for invoking
methods was defined which transparently han-
dles the appropriate conversion of method argu-
ments and result values: class instances are given
and returned, respectively, as object handles, and
scalar values in their string representation (e.g.
”6” for an integer type). Finally, a natural syntax
is achieved by transparently binding object han-
dles to this Tcl command, i.e. object handles be-
come Tcl commands themselves. Hence, the
application of a method”get_sources” to an ob-
ject handle”$module” and the following applica-
tion of the method”card” on the resulting object
(cf. fig. 2), read as:

set no_of_sources [[$module get_sources] card]

Fig. 3 shows an architectural overview of a
tclOBST application: the shaded area represents
the code of a customized Tcl interpreter which is
capable of interpreting a script of Tcl(OBST)
commands. It consists of a standard part which
will appear in all such interpreters - namely the
core OBST, tclOBST and Tcl/Tk libraries, plus
the additional code which is associated to the
(OBST) data types used in the application.
tclOBST is built on top of the core OBST library
whereby access to the application specific code
and its data is provided by the OBST (run time)
system and by interpreting the meta objects hol-
ding the description of application objects. As
symbolized by the dimmed script, tclOBST will
be mostly transparent to the writer of an appli-
cation script which will think and program in
terms of application objects.



ble, but yet general mechanisms for tool integra-
tion in STONE which are applicable to as well
OBST based as other tools.

2. The tclOBST Interface

Starting from the above listed experiences we
looked for a way to provide flexible, interpretati-
ve access to an OBST database. An existing in-
terpreter for a lambda calculus based language
[7] proved to be dissatisfactory in terms of user
friendliness, extensibility and integration in a X/
UNIX environment.

2.1 Ingredients

Tcl/Tk was chosen as the technical basis for
our solution because its properties matched our
requirements: Tcl [4] works well together with
UNIX/C/C++ based applications and the functio-
nality of such an application can be easily inte-
grated into Tcl as soon as the application’s data
can be represented as strings and its functionality
can be expressed by the combination of a few ba-
sic commands. A C/C++ or UNIX shell program-
mer will accustom fast to the Tcl language and
the language is lean in providing just the basic
processing capabilities which the experience of
UNIX shell programming has shown to be suf-
ficient for the applications we had in mind: stan-
dard control structures, string handling, basic
arithmetics, file handling, and program executi-
on. A particular asset of Tcl/Tk is of course the
embedded X toolkit Tk [5], whereby the existen-
ce of powerful interactive interface builders [1]
was probably even more attractive to us than Tk
itself. Tcl and in particular Tk provide good per-
formance. They exhibit a very dynamic nature in
that code and most data elements can be accessed
and modified at any time. A very important crite-
rion was that Tcl/Tk and most of the published
additions can be used without any licensing re-
strictions, since any outcome of STONE is to be
distributed in the public domain. Last not least,
Tcl/Tk and the so far published extensions are
used and constantly pushed forward by an active
user community.

The OBST data model is hybrid by differen-
tiating between class types and basic, so-called
scalar types (see fig. 1). Class types comprise
both structural and behavioral aspects, i.e. attri-
butes and methods. Attribute domains may be
class types as well as scalar types whereby an at-
tribute with a class domain will contain object
identifiers as values. Thus any, even complex
data structure is recursively built from scalar
values and object identifiers.

For an example consider figure 2 which con-
tains a subset of a hypothetical OBST data base:
theModule object contains two attributesauthor
andsources with class type domainsString, and
Set<Source>, respectively. Both attributes hold
object identifiers. The referencedString object
contains the attributesize with an integer domain
type. This integer type is an external scalar type
according to the OBST data model (see fig. 1).

All accesses to the state of an object, i.e. rea-
ding and writing an attribute, are performed by
invoking attribute access methods generated by
the OBST system. OBST provides furthermore a
standard conversion between scalar values and
string representations. This forms the basis for
processing OBST object structures in a string-

Type

ExternalType

ClassType ScalarType

EnumType

UnionType

Figure 1 OBST type hierarchy

author:
sources:

obj#3006
obj#2605

Module String

size:
text:

Set <Source>

6

”martin”

Figure 2 OBST data structure example



Interfacing an
Object-Oriented Database System

from Tcl

Dietmar Theobald

Forschungszentrum Informatik (FZI)
Haid-und-Neu-Straße 10-14

D-76131 Karlsruhe
Germany

email: {theobald,stone}@fzi.de

May 1993

Abstract

We present an extension to Tcl which realizes a
generic interface to an object-oriented database
system.1 This interface provides flexible access
to the database system by drawing on Tk/Tcl’s
ability as a scripting language promoting rapid
prototyping and the development of graphical
user interfaces. Ongoing work investigates the
suitability of the interface as a means for applica-
tion development and tool integration.

The first chapter introduces the context of this
work and summarizes its starting point. Then the
implementation and the architecture of the inter-
face are described. Usage experiences and an out-
look on future work concludes the presentation.

1. Starting Point

The Forschungszentrum Informatik (FZI) par-
ticipates in the project STONE („Structured and
Open Environment“) which aims at the develop-
ment of a software engineering environment for
the educational domain [3]. A major contribution
of FZI to this project is the object-oriented data-
base management system OBST, a core compo-

nent which serves as the main persistent store for
the tools in a STONE environment.

OBST features an object-oriented data mo-
del which supports core concepts found in major
object-oriented languages [10]. OBST is targeted
at a UNIX environment where workstations are
coupled in a local area network. The system
employs C++ as host language for writing me-
thod implementations. Applications access the
database via a programming interface, i.e. they
are implemented in C++ and linked with the da-
tabase library.

For larger applications where the application
domain is well understood and/or efficiency is at
premium, C++ based development is the method
of choice. This does not necessarily apply to pro-
totypical implementations such as concept stud-
ies or for applications where much emphasis is
placed on the user interface part. Furthermore, in
case of small applications performing e.g. admin-
istration tasks the overhead in terms of disk space
and development effort might not merit their re-
alization as a C++ program.

Another area of application development de-
manding specific support is the integration of
OBST based tools into a possibly heterogeneous
environment: There should be simple and flexi-

1. The work reported here is funded by the German Ministry of Research and Technology (BMFT) as part of the project
„STONE“.


