
Tcl in a High-Throughput Biological Lab

Scott P. Hunicke-Smith & Dan Mosedale { Stanford Yeast Genome Project

Abstract

The implementation and use of a Tcl-based language

for the control of a laboratory robot is described. Also

discussed are ideas for the future use of Tcl and Tk

in various laboratory roles. The enthusiastic accep-

tance of the current implementation, the portability

of Tcl scripts and Tcl itself, and the network of sup-

port available lead us to believe that Tcl should enjoy

more use in any high-throughput (i.e. automated)

biochemical laboratory.

1 Introduction

The main goals of the Stanford yeast genome group

are to sequence the genome of Saccharomyces cere-

visiae (a popular strain of yeast) and to develop au-

tomated approaches which will ultimately prove use-

ful in sequencing the human genome. At present,

determining this genetic sequence is largely a man-

ual, labor-intensive process involving large numbers

of samples and biochemical process steps. Automa-

tion of well-established sample manipulation proto-

cols is necessary in order to reduce costs and im-

prove accuracy. In addition, ever-increasing numbers

of samples require computerized tracking. Tcl/Tk

may serve as a good foundation for future improve-

ments in both these areas. To give a rough idea of the

scope of this project, consider the statistics in Figure

1 (taken from current production at Stanford).

At 7500 \handling steps" per week, the yeast

genome could be sequenced in 48 years, the human

genome in 11,500 years. This illustrates the necessity

of collaboration in sequencing, that sequencing tech-

nology must improve, and that an enormous amount

of data must be handled.

Our goal is to double the production rate each year

over the next 5 years, and Tcl/Tk may be a critical

part of that increase. Our �rst use of Tcl has shown

great promise; we have replaced commercial software

with a Tcl command-line interpreter named SYGI

(Stanford Yeast Genome Interface) which is used to

drive a laboratory robot.

Other possible uses of Tcl include:

� New instruments with Tcl as the primary inter-

face.

� Control of multiple Tcl-driven instruments via a

Tk interface at the workstation level.

� Completion of data and sample 
ow control, by

incorporating a commercial database into the

production sequencing.

2 Current Use of Tcl

2.1 The Biomek in its Original Form

The Biomek 1000 laboratory robot and it's accom-

panying side-loading assistant, the Biomek SL, were

primarily intended to replace repetitive manual pipet-

ting. With this simple goal in mind, Beckman Instru-

ments created software which they thought would be

usable by the biological community using the tools

available at the time (about 1988). The net result

was a program called Genesis which required very lit-

tle computer knowledge to operate, though one still

had to learn the menu-driven control structure of the

program. Further, it simpli�ed the programming en-

vironment by pre-de�ning many of the tasks, tools,

and disposables which could be used with the instru-

ment. This left the user with relatively simple but

rigid control.

Apparently this interface worked quite well for

most labs doing simple tasks, but as laboratory au-

tomation increased, users such as ourselves needed

more powerful control over the robot. This led

to Beckman's distribution of a �eld-service program

called Biotest. Originally intended only for testing

and calibration of the robot by quali�ed �eld-service

Page 1



representatives, Biotest was inadequate for the types

of sophisticated programming we needed in the lab.

It did, however, give complete control of the robot

at the lowest possible level and also retained a few

of the higher-level commands of Genesis. Another

limitation we found with both Genesis and Biotest

was an inability to control other external devices in

concert with the Biomek. Aside from this, the ma-

jor drawbacks remaining with Biotest all lie in areas

at which Tcl excels: variables, looping, conditionals,

and general structured programming.

Starting from the Biotest code, we were able to

integrate the low-level functions of the Biomek into a

command-lineTcl interface. Figure 2 shows examples

of code written for all three interfaces.

2.2 How is Tcl implemented?

In this implementation the tcltest interpreter was

used with only minor modi�cations for initialization.

John Martin's DOS port of Tcl V6.2 (available by

anonymous ftp from cajal.uoregon.edu) was used.

12 new built-in commands were added to allow com-

plete control of the robotic system (both the Biomek

1000 and the SL). They are: move, home, stat,

config, connect, disconnect, get, unget, pipette,

pump, vac, and tip rack. Some of these commands

are redundant. For instance, pipette may actually

be done (and is done, internally) by issuing a move

command to the pipette motor, but having a sepa-

rate command enhances readability and also allows

for low-level error detection and consistency checks

(e.g., is a tool in place to pipette with?).

The problem of connecting to other devices via

SYGI was addressed by simply writing external pro-

grams to drive these devices with DOS command-

line interfaces and then using Tcl's exec command

with arguments appropriate to the external program.

Variables could then be passed to these programs

from within SYGI.

Once the hard-coding was done, several SYGI util-

ity procedures were written to facilitate the port from

Genesis and Biotest. These capitalized on the ben-

e�ts of Tcl because the conversion programs them-

selves could be written as scripts. The users of

the robot then quickly established a small library of

routines which they could modify and then use re-

peatedly. Here again, the 
exibility of a procedu-

ral language was key, since general routines could be

written and input parameters changed for each run.

Thus, one entire class of biological protocols can be

made into a single procedure having appropriate ar-

guments.

2.3 Use of SYGI in Production Se-

quencing

Once most of the basic procedures are de�ned, they

are run in production mode unaltered. We currently

have 10 such procedures, several of which are run

daily. To simplify the interface even more, SYGI was

created to accept command-line arguments specifying

a Tcl script to be sourced and executed on startup

(similar to \wish -f" on UNIX). One of the lab tech-

nicians added a Pascal interface which allows users to

select a sequence of SYGI procedures from a list and

then prompts for any necessary parameters. Figure 2

shows one possible building-block procedure for some

of these protocols.

Currently, SYGI is being used in at least seven ge-

netics labs, both commercial and university, and has

received very high praise fromall. Given this response

to a program with a crude user interface and rela-

tively little support, Tcl appears to be well suited to

this environment.

3 Future Uses for Tcl/Tk in

the Genome lab

Having production experience using Tcl in our lab,

we are looking forward to other ways that Tcl and Tk

could make our lives easier. The rest of this section

describes some of our conceptions of future projects.

3.1 Other Robots

One of the natural next steps is to use Tcl to drive

the other robots we are developing in house. Clearly,

this would make the lives of the sta� biologists much

easier; once they have learned the language which

controls one of the robots, they already know 95% of

that which controls the others.

In particular, we are considering driving a new

robotic colony picker. This machine (currently run

by a Sun SPARCstation IPC) works by digitizing an

image of a petri dish with viral colonies grown on it.

The driver then interfaces with outside image analy-

sis software to decide where on the dish the plaques

are located. Then, the robot positions the petri dish

by moving the stage which supports to the appro-

priate spot underneath a wheel of tungsten picking

elements. The plaques are then picked and placed in

a 96-well plate on a second stage.

The software development cycle for this device

could be accelerated by using a Tcl-based interpreter

which could then be left in place for the production

use of the machine. Implementing Tcl commands to

Page 2



control and calibrate the stages, the loaders, the dig-

itizer, and the wheel of picking elements could pro-

vide an environment which allows for fast develop-

ment and modi�cation of complex scripts.

An oligonucleotide-synthesizer robot is currently

being built around a 486 machine which could bene�t

in similarways from a Tcl-based controlling language.

3.2 Control of Multiple Instruments

from a Tk Interface

The production setup in the Genome Project may, in

the future, have up to �ve or more robots running at

any given time. Once this becomes a reality, it will

be especially important to query the status of all of

the machines without having to visually inspect each

one. It would be even more useful if one could start

a run, modify parameters, or otherwise individually

control these robots from a single control panel.

This is an application well-suited to Tk. However,

as one of our project directors likes to note, \We have

a veritable Tower of Babel of computers that need to

talk to each other." Speci�cally, we have robots run

by Macintoshes, DOS PCs, and UNIX machines un-

der the control of a variety of driver programs. For

those machines whose drivers are not Tcl-based, a

simple Tcl-interpreter front-end to the real driver can

be written. In implementing this, therefore, we will

probably take one of the publicly available send com-

mands which works over TCP/IP (e.g. tcpConnect)

independent of Tk and port it to the Macs and PCs.

A centralized control panel written in Tk using this

separate send command should come together fairly

quickly. With an appropriate GUI, it would be use-

ful to operators without any knowledge of Tcl. One

could start or stop the robots, monitor status, set or

tune parameters, etc. For the more advanced user,

segments of Tcl code could be entered and sent di-

rectly to the robot drivers in order to modify their

behavior.

3.3 Sample Tracking & Data Flow

Examining the Yeast Genome Project from a macro

level, one can easily see where the aforementioned

vast amount of data comes from. Once a plaque has

been picked and put into one the 96-well plates, it

becomes a named entity. From there, it needs to be

tracked (as a physical sample with a logical name)

as it works its way through the various technicians,

processes, and robots until it ends up as sequence

data on our UNIX machines. At that point, we need

to track both the sequence data as well as the physical

sample of that data.

In the biological community, Sybase is something

of a de facto standard for database work. In order

to make for easy exchange of our data with other

scientists, we will very likely choose Sybase as the

basis of our sample-tracking software. The existence

of Tom Poindexter's SybTcl extension should further

solidify our choice of both Tcl/Tk and Sybase.

We will be able to start the life of a sample by hav-

ing the plaque-picker generate a name for it as it is

picked. This name can then be sent to the Tk con-

troller application described earlier, which will pass

it along via SybTcl to the sample-tracking database.

For the rest of it's lifetime, the sample can then be

tracked (plate location, refrigerator, status, point in

the process line, etc.).

Furthermore, with the use of bar-coded plates, the

process can be sanity-checked during the sequencing

process: are we really sequencing the plate and sam-

ples that we think we are? Another advantage is that

it can simplify manual error correction. For instance,

if it is decided that one sample was contaminated

along the way and needs to be resequenced, we can

�nd that sample and reinsert it in the middle of the

assembly line. Then, the Tk controlling software can

be instructed that, on that particular plate, only a

single sample is to be extracted and sequenced (un-

like the rest, where the entire plate of 96 samples will

be processed). The Tk controller will then be able

to pass along this information to all the robots and

the sample-tracking database, which will proceed to

update the database and notify the correct personnel

as needed.

4 Conclusions

Based on our current experience with Tcl and a few

minor tools written in Tk, we anticipate greater use

of Tcl throughout laboratory operations. These may

take the form of device drivers, process monitors, and

task managers. It is hoped that Tcl may become more

of a standard driver for many industrial devices, per-

haps even being burned into EPROMs of microcon-

trollers. Other extensions of Tk are obvious as well,

particularly porting to other environments (such as

Macintosh and MS-DOS systems) from which devices

are already driven. The send functionality and mod-

ularity of both Tcl and Tk make them obvious choices

for process monitoring and task management. Gen-

erally, Tcl/Tk seems to be a long awaited product for

those developing instrumentation and integrating au-

tomated processes. Its use in these and many areas

beyond computer science should be encouraged.

Page 3



5 Acknowledgements

Thanks are due to John Mulligan for vision in au-

tomation, to Andy Kayser for testing and new inter-

faces to SYGI, and to George Hartzell for introducing

the lab to Tcl/Tk.

6 Author Information

Scott P. Hunicke-Smith is an Engineer-in-Residence

with the Stanford Yeast Genome Project. He is also

currently working on his Ph.D. in the Mechanical En-

gineering Department at Stanford. His e-mail address

is ssmith@genome.Stanford.EDU.

Dan Mosedale is the Genome Project's Systems

Administrator. He received his B.S. in Computer

Science from the University of Oregon and has been

involved with UNIX system administration and pro-

gramming for a number of years. He can be reached

via e-mail at mosedale@genome.Stanford.EDU.

Page 4


