
Autonomous Knowledge Agents
How Agents use the Tool Command Language

Raymond W. Johnson

Artificial Intelligence Center
Lockheed Missiles and Space Corporation

3251 Hanover Street
Palo Alto, CA 94304-1191

Abstract

The Autonomous Knowledge

Agent project is an internal research and

development project being conducted at

Lockheed's Artificial Intelligence Center.

The goal of the project is to develop an

architecture for creating and running

personalized software agents. This paper

will discuss what traits we require of a

software agent. We will then discuss how

one requirement, that an agent must be a

first class citizen, led us to use Tcl as a

command language for agents and the

services and tools they use.

Introduction

Computers are so prevalent today

and information so abundant that

computer users are being barraged with

too much information. More and more

time is being spent by people searching

for and retrieving information. A

plethora of simple tasks such as updating

a common directory of files or sending

out frequent mailings also add to

computer overload. The net result is that

more and more people are becoming

slaves to their computers. Agents hold

the potential promise of relief from the

overload of information.

The agent metaphor is derived

from the idea of a personal assistant (in

this case a Personal Digital Assistant or

PDA). Much like a secretary, the agent

(acting as a PDA) is delegated simple

and/or periodic tasks. Ideally an agent

should be able to do any computer related

task you may delegate to a secretary.

However, given the current state of

artificial intelligence technology, it's only

practical to build agents that can handle

tasks in restricted domains.

The architecture we have designed

allows for the management of most any

type of agent. An agent has the potential

to run any type of code and use any type

of service. All that is specified is a high

level control protocol that allows agents to

be queried for their status, to be activated

or deactivated, or to be given other

messages defined for that a specific agent.

Other services such as scheduling and

communication links are also available to

the agents but they are not required to use

them.

However, in this broad architecture

agents are as difficult to design and create

as writing traditional programming code.

To aid in the creation of agents an

engineer may design a “domain template”

that will allow agents in a given domain

to be created by users with no

programming experience. The domain

template consists of knowledge of the

domain, the code required to carry out

potential tasks, and a graphical interface

through which the user specifies the

desired agent behavior. The use of

domain templates make the creation of

agents simple without restricting the

power of agents in other domains.

What makes an Agent?

We mention above that our

architecture can support an agent as

defined by any piece of code. However,

an agent must posses certain behaviors

and abilities to be considered a PDA and

not just a another programmable tool. We

believe agents should have the following

characteristics:

• Agents should be Autonomous.

They must be able to run without user

intervention. Other than being told what

to do, they should appear to have a life of

their own.

• Agents should be Intelligent.

They should be able to figure out how to

carry out what the user has requested and

should be able to accommodate a myriad

of potential events and situations. They

can not expect to ask for help from the

user when problems arise.

• Agents must be first class

citizens. By this we mean that agents

must be able to potentially do any

computer related task a human user may

do. An agent should be able to control or

drive any other application or service on

the machine.

Each of these characteristics

present interesting and challenging

problems. In this paper we will limit the

discussion to the problem and possible

solution of making agents first class

citizens.

The struggle for equality

The current state of most computer

environments is strongly biased against

programmatic control as required by

software agents. The graphical user

interface (GUI) revolution created many

applications that only accept control via

mouse clicks or movement and dialog box

style keyboard input. Control of such

applications by other programs is

virtually impossible. Even "command

line" environments such as UNIX provide

inconsistent access to the control of

applications.

To alleviate this inequality for

agents all applications and services must

be controllable in a consistent

programmatic way. One solution is to

define a scripting language that every

application must support. This has the

side effect of making services and tools

independent of their user interfaces.

Agents may then use services and tools in

a more "natural" way (to software agents,

anyway).

The difficulty is, of course, that

even if a dictatorial law demanded that

every application be scriptable it would

still take years for the thousands of

existing applications to support scripting.

Until such time, however, agents will

remain second class citizens.

The Role of Tcl

Fortunately, several operating

system environments have taken the step

to evangelize the benefits of scriptability

and have provided tools for supporting it.

Most notably among these HP's

NewWave environment (HP89) and

Apple's forth coming Apple Script

(MW93). However, neither of these

scripting systems met all of the

requirements we had for our agent

project.

It was decided that the Tool

Command Language (TCL) or "tickle"

should be used for our project. It had the

advantage of being non-proprietary and

not very system dependent (although it

does have a strong UNIX bias). Tcl is also

extremely extensible and very powerful.

Finally, the issue of portability played

heavily into our choice of using Tcl.

The main use of Tcl was to provide

a consistent interface to the various

services and tools our agents would use.

For example, Tcl interfaces were defined

for WAIS1 database services, SMTP2 mail

services, and the CLIPS3 knowledge base

system. An abstract view of the use of Tcl

in our architecture is given below.

WAIS SMTP Etc...

Tcl Tcl Tcl

Agents

Fig 1. The use of Tcl

This has several advantages that

reduce the complexity of a software agent.

Instead of writing Tcp/Ip sockets for

WAIS accesses, creating apple events to

mail messages, and calling C functions to

access the knowledge base an agent only

needs to use Tcl procedures to access all

services and tools. Having a consistent

language for all services makes the

creation of agents a much simpler task. In

addition, because the implementation of

services are independent from the Tcl

interface, the interface may stay the same

over various implementations. This has

made it possible for agents designed on a

Macintosh to run with little or no changes

on a UNIX workstation.

1WAIS - Wide Area Information Services
2SMTP - Simple Mail Transfer Protocol.
It is used to send internet mail.
3CLIPS - C Language Integrated
Production System. CLIPS is a product of
NASA's Software Technology Branch.

Tcl is also used to control the

agents themselves, in fact at the highest

level agents are simply Tcl objects.4

However, the object itself may do nothing

more than pass messages on to the actual

agent. An agent of a given domain is

represented as a class that must be

inherited from a basic agent super class.

This basic class defines the core messages

any agent must be able to handle, for

example, the message asking for an

agent’s status. The use of Tcl objects give

us a way to hide and encapsulate the

definition of an agent and provide a

consistent way to communicate with

them.

One item Tcl lacks is a consistent

protocol for sending Tcl scripts to other

applications. Most UNIX X11

applications use the Tk "send" command,

while many Macintosh applications

(including ours) use the Do Script apple

event. We are currently using different

communication protocols for sending to

different applications. While we are

planning to develop a more consistent

Tcp/Ip based communication scheme, we

hope some cross platform standard for

sending scripts will emerge. Fortunately,

we have been able to abstract the

communications protocol to a level where

a change in the protocol will not require a

change to the agents.

4OBJECT Tcl is a Tcl extension written by
Lockheed's Artificial Intelligence
Center. It is not an official (or
supported) component of the Tcl
language.

Example Agent Domain for Managers

Every department within Lockheed

writes weekly activity reports that

describe work in progress and new

undertakings. It is important for

managers to keep abreast of these reports

to avoid wasting resources by

"reinventing the wheel." The reports are

also important for managers who need to

find other groups within Lockheed to

team with or share technology. Assuming

the contents of these reports were

compiled and made available in an

electronic format, we could define an

agent domain we'll call the "weekly

activity report" domain. The use of agents

in this domain has the potential to save

Lockheed from wasting valuable

resources.

Agents in the "weekly activity

report" domain have the role of helping

managers keep abreast of the deluge of

activity reports. All the manager needs to

do is enter keywords about the domain

she is interested in (Boolean logic may

also be used). The manager may also

specify how the information should be

reported back to her. For example, the

agent may send interesting activity

reports to the manager via a graphical

interface, electronic mail, or even a Fax.

The agent, being savvy about the domain,

may perform formatting, collation, or

other processing without the user having

to specify such actions

When creating an agent, the most

common options for this domain are

easily defined via a simple graphical user

interface. Advanced behavior can be

defined in a rule based manner or by

supplying Tcl scripts. However, because

of the limited domain and the ease of the

GUI, writing scripts will rarely be

necessary.

Future Work

Once a domain template like the

"weekly activity report" domain is

created, developing and managing agents

is fairly simple. Currently, the creation of

these domains is a difficult and time

consuming task. The long term goal of

our project is to make the creation of these

domains much easier.

The creation of a domain involves

creation of the high and low level actions

an agent my perform, developing the

knowledge reasoning ability of the agent

in that domain, and finally a user interface

that allows the agent to be easily

assembled by a non-technical user. Of

these, the most time consuming is the

creation of the user interface.

The windowing tool kit Tk, which

is built on top of Tcl, is ideal for creating

simple interfaces and requires much less

coding than traditional windowing tool

kits. We plan to incorporate Tk when it is

ported to the Macintosh. We believe Tk

would offer us two major advantages.

First, we would have cross platform

compatibility of the user interface. In

addition to agents, we desire the ability to

be able to transfer domain templates

across platforms without extensive

modification. Second, we feel Tk is an

ideal medium for automatically creating

user interfaces from domain knowledge.

Several systems have demonstrated the

ability to automatically create a user

interface for an application in a small

limited domain (Foley91)(Wiecha90). We

believe that the limited domains of agents

and the relatively low complexity of Tk

scripts, make it feasible to automatically

create a Tk interface for an agent domain

based on the knowledge and actions

defined for that domain.

Conclusions

All in all we have found Tcl to be

an indispensable part of various facets of

the AKA project. Its flexibility and

extendibility has allowed it to serve

several important roles. As a tool

command language, Tcl provides us a

consistent interface to the tools and

services an agent may use. As a scripting

language, Tcl provides a simple way to

define high level tasks and agent actions

built upon the basic tools and services.

With the help of the object oriented

extensions, Tcl was also used as an agent

control language and created a simple

way to communicate with agents.

Tcl is still young and we hope for

its continued success. We also hope that

Tcl will become widely used on many

operating systems (including a port of Tk

to the Macintosh and Windows) and resist

becoming too tied to the UNIX operating

system.

Acknowledgments

The research behind this paper is

funded from an internal research and

development project sponsored by

Lockheed's Artificial Intelligence Center

in Palo Alto. The author would like to

thank Chris Toomey for his guidance and

help with editing this paper.

References

HP89 Stearns, Glenn R. Agents and the HP

NewWave application programmer interface.

Hewlett-Packard Journal v40, n4 (August,

1989) p. 32.

MW93 Cohen, Raines. AppleScript Toolkit,

runtime version will ship this month.

MacWEEK vol. 7 num. 14 (April 5 1993) p. 1

Foley91 Foley, J., Kim, W., Kovacevic, S., &

Murry, K., Defining Interfaces at a High

Level of Abstraction, IEEE Software, Jan. '89,

pp. 25-32

Wiecha90 Wiecha, C. & Boies, S. Generating

User Interfaces: Principles and use of ITS

Style Rules, Proceedings of the ACM

SIGGRAPH Symposium on User Interface

Software and Technology: UIST '90.

Snowbird, UT. Oct. 3-5, 1990. pp. 21-30.

