
The Next, Best Thing in File Browsers�

Michael A. Harrisony Thomas A. Phelpsy

University of California, Berkeley

Abstract

In general, the task of information browsers is (1) to aid in
navigating through data bases to locate the desired infor-
mation, and (2) to examine or otherwise manipulate this
information. Heretofore, file selection boxes—which an
application uses to request a file name—have had only
limited navigation capabilities and almost no file manipu-
lation or inspection capabilities. This paper argues for the
need of file browsers, for use in conjunction with and apart
from an application. This paper introduces NBT, which ex-
tends the design of NeXTSTEP’s file selection box and sets
a new standard for file browsers in the areas of directory
navigation and file inspection and manipulation.

1 Introduction

With hundreds or thousands of megabytes of personal
disk space augmented by much larger central file servers,
the task of locating specific information can be laborious.
Once one moves from editing a small number of files in one
or two directories and attempts to incorporate images from
clip art or data libraries, reference archived documents, or
tap centralized resources, one faces the problem of manag-
ing information. In the case of a file system, the informa-
tion is typically organized into a hierarchy, but lacks any
further annotation of or links between files, as contrasted
to hypertext systems. Current file selection boxes fail their
users in each of the scenarios mentioned above, for at the
point where the user must make a decision about whether
to select a particular file or not, he does not have sufficient
information. Forcing the user to choose a particular file,
which subsequently can be deleted from the workspace and
replaced, is obviously an inelegant, second-best solution.
When referring to libraries of information, file names may
be too similar to make the correct choice; one would like
a general preview mechanism. When referencing archived

�This research has been sponsored in part by the Defense Advanced
Research Projects Agency (DARPA) under Contract N00039-88-C-0292,
monitored by Space and Naval Warfare Systems Command, and under
Grant MDA972-92-J-1028. The content of the information in this paper
does not necessarily reflect the position or the policy of the Government.
Thanks are due to Vance Maverick, Brian Dennis, Kannan Muthukkarup-
pan, and Wayne Christopher, all of whom reviewed drafts of this paper.

yComputer Science Division, 571 Evans Hall / University of Califor-
nia, Berkeley / Berkeley, CA 94720. E-mail addresses: fharrison,
phelpsg@cs.berkeley.edu.

files that may have been stored in a compressed format,
which must be uncompressed before use, one would like
to apply directly whatever massaging is necessary to make
the file acceptable to the application. And when searching
large repositories of information (as on a central server)
one would like an efficient means of navigating the large
directory hierarchy, annotatingselected locations for future
reference.

Succinctly, the problem of information management as
applied to file browsing is that of (1) establishing loca-
tion quickly and efficiently, and (2) working there (e.g.,
viewing, searching, printing, unarchiving), for after hav-
ing invested the effort of establishing a context one should
not be forced to a separate “work shell” to accomplish the
task.

Part of the Ensemble Multimedia Editor of structured
documents project [GHM92], NBT addresses these con-
cerns by bringing together various means of navigation,
providing an extensible means of viewing and manipulat-
ing files, and learning from user interaction to customize
itself. NBT is useful for navigating and inspecting files
apart from or in conjunction with selecting them for use in
a application. NBT is the next, best thing in file browsers.

2 Navigation

File selection boxes for graphical user interfaces have ex-
isted for at least a decade. Yet even today, many X Win-
dows and even Sun’s OpenWindows applications merely
present a line to the user on which he is expected to type the
full, often lengthy path name of the desired file [NeX92].
Motif [Ope91] and some X and Tcl/Tk programmers have
improved on this by offering a point-and-click (no typing)
mechanism.

NBT consolidates the best features of file selection boxes
from the Macintosh and NeXT, which it resembles, as
shown in Figure 1. Like NeXTSTEP, NBT presents a
contextual view of the current directory and the n previous
ones in the current path. One may navigate to nearby
directories by clicking on directory names to descend into
that directory, or by clicking on the left arrow at the left-
most edge to move up. As on the Macintosh, NBT’s folder
icon in the upper-left lists all the directories in the current
path in a pulldown menu; releasing the mouse button over
any component jumps to that location. Further, the user
may save commonly-accessed directories on the Shortcuts



Figure 1: Navigation. Based on the NeXT’s File Viewer, NBT shows previous directories as context and allows direct
access to stored directories through the Shortcuts menu. The folder icon at top left implements Macintosh-like access to
any part of the current path. Keyboard navigation is also available.

menu. Clicking ‘+’ adds the current directory to the list
and ‘-’ removes it; subsequently selecting this entry from
the Shortcuts pulldown jumps to that location. Thus, NBT
brings together and gives direct access to three modes of
navigation: local (a single directory level up or down),
global linear (any number of directories up, but only along
the current path), and global (to any location in the full
hierarchy, so long as it has been previously saved).

Finally, consider the following scenario. In putting to-
gether a newsletter, a user must repeatedly switch between
a photos directory and a story text directory. Most present
file selection boxes present the user with the previously-
selected directory the next time it is invoked, which in this
case maximizes inconvenience. With NBT, one could save
the two directories as Shortcuts and switch between them
quickly. However, NBT takes a further step by keying the
default directory to the application-supplied title, so that a
request from the main application to NBT to, say, “Import
Bitmap” presents the last directory accessed with this mes-
sage, which may be very different than the “Import Text”
directory.

3 Inspection and Manipulation

Having located a particular file with the navigation facili-
ties described above, one must decide what to do with it.
One may (from a ‘Utilities’ palette, not illustrated) execute
simple commands that apply to a single file, for example
deleting, unarchiving and uncompressing. For file inspec-
tion, NBT gives both “raw” and “semantic” views, both of
which are illustrated in Figure 2.

Upon selecting a file, users may ‘Peek’ at it or ‘View’

it. ‘Peek’ing shows the raw ASCII contents of a file, along
with file meta information, e.g., instance creation time and
file size. As in Emacs [Sta87], one may search the con-
tents incrementally, character by character, either forward
or backward. Regular expression searching is available in
a text entry line at the bottom of the window. One may
print out this information through a paper-conserving fil-
ter (enscript) or raw (lpr, useful for PostScript files),
or select a region and copy it to the X clipboard. ‘Peek’
is useful for lengthy files in which only the header con-
tains any human-decodable information (e.g., PostScript
sources). Both ‘Peek’ and ‘View’ (described below) au-
tomatically negotiate common (e.g., compressed) formats
for saved files.

‘View’ing tries to determine the file’s type by consulting
a user-extensible suffix-to-type association list. If nothing
matches, its full ASCII contents are shown. If a match
is detected, the file is viewed in its “semantic” form, for
instance a PostScript file is shown in a WYSIWYG view.
Semantic matches may either (1) start up a process which
is given the full path name of the file to view (e.g., .ps
files start up a PostScript previewer such as Ghostscript and
.au sound files are played on the speaker, if any), (2) use
Tcl’s send command to communicate this information to
a running Tcl interpreter (e.g., .dvi files call a Tcl/Tk-
aware dvi previewer [Phe93]), or (3) invoke custom Tcl
(and hence C) code (e.g., bitmaps are shown on a canvas
widget). The most complex example of a custom viewer
is that for tar archive files. The semantic view shows
that tar’s table of contents; selecting an entry (perhaps
README) and clicking ‘extract’ retrieves the file from the
(possibly compressed) tar archive, closes the semantic
view, and selects the newly-extracted file so that a single



Figure 2: Inspection. Here we are ‘View’ing a “semantic” view of a bitmap (the skeleton) and ‘Peek’ing at the raw ASCII

of another file (in this case the workshop announcement, which is stored on disk in a compressed form). In the Peek
window, seventeen matches of the regular expression [Tt]cl have been found and those visible in the current region are
highlighted.

click on ‘View’ will show it. Thus, viewing a PostScript
file buried deep within a compressed tape archive file is
only a few clicks away.

4 Conclusions

To choose a file from a complex file system, a user needs
to navigate the directory structure and inspect or otherwise
manipulate files of multiple media types before making
a choice. This necessity is growing ever more urgent as
file systems grow, incorporating large central libraries of
files. NBT sets a standard of capabilities as a file browser
useful apart from an application, but which should always
be available in conjunction with an application as well.

References

[App87] Apple Computer, Inc. Human Interface Guide-
lines: The Apple Desktop Interface. Addison-
Wesley, Reading, Massachusetts, 1987.

[GHM92] Susan L. Graham, Michael A. Harrison, and
Ethan V. Munson. The proteus presentation sys-
tem. Proceedings of the Fifth ACM SIGSOFT
Symposium on Software Development Environ-
ments, pages 130–138, 1992.

[NeX92] NeXT Computer, Inc. NeXT versus Sun: a com-
parison of development tools. Technical Report
Seven in the NeXT Computer, Inc. White Paper
Library, NeXT Computer, Inc., Redwood City,
CA, January 1992.

[Ope91] Open Software Foundation. OSF/Motif Pro-
grammers Reference. Prentice Hall, Englewood
Cliffs, New Jersey, 1991.

[Phe93] Thomas A. Phelps. dvi2x: A Tcl/Tk-based
previewer for TEX. Ensemble Working Paper,
1993. To appear.

[Sta87] Richard M. Stallman. GNU Emacs Manual,
Sixth Edition, Version 18. Free Software Foun-
dation, Cambridge, MA, March 1987.


