| ssue #1.
Managing Extensions

John Ousterhout

Computer Science Division
Department of EECS

University of California at Berkeley

| ntr oduction

Goal:

» Makeit easy to mix and match various extensions
to Tcl and Tk (both C code and Tcl scripts).

Problems:
» Name conflicts.
* Installation is non-uniform and clumsy.

* Proliferation of binaries.

Solutions:
» Naming conventions.
* |nstallation conventions.

» Dynamic linking, better auto-loading.

Managing Extensions, slide 2

Naming Conventions

Problem:

» Each person assumes he/she is the only one
building extensions.

» Different packages use same names for global
variables and commands, e.g. send.
Possible solution #1: module mechanism

* Tcl provides mechanism for static variables and
procedures?

* Still doesn’t solve problem for new commands and
global procedures.
Solution #2: singlecommand with options

e Likestri ng command: stri ng i ndex, etc.

« Still need to find unigue command name, unique
variable names.

Managing Extensions, slide 3

Naming Conventions, cont’d

Solution #3: application prefixes
« For each application or extension, pick a short prefix:
expect _

Xp_
th_

dp_

o Use prefix in all global names (variables, commands,
procedures):
Xp_send

tk_priv
dp_rpc
* Suggestions for uniformity:
- Only one underscore per name.
- Use capitalization at internal word boundaries.

 Example:t kK _nmenuBar ,nott k_nmenu_bar or
t k_nenubar .

Managing Extensions, slide 4

Other Naming I ssues

Clashesin prefixes?
* Establish registry for prefixes.

Solution #4: object-oriented commands
e Like Tk widgets.

» One command to create object, returns object
name: button . b.

 Use object name as command name, put action as
first argument: . b i nvoke.

» Avoids command space pollution: only one new
command (plus object commands).

 Can provide uniform actions for many different
kinds of objects.

» Must alocate unigue object names (similar to
choosing unique prefix).

Managing Extensions, slide 5

| nstallation

Scripts are easy:
e Put. t cl filesinadirectory.
* Createt cl | ndex file.

» Add directory to aut o_pat h.

C codeishard:
» Where to put source code?
* Must compile extensions.
» Must add code tow sh main program by hand.
* Must make new binary.
« Different packages install differently.

* Incompatible versions.

Managing Extensions, slide 6

Sour ce Code M anagement

* Pick directory to hold sourcesfor Tcl, Tk and
extensions.

 Each package or application is a subdirectory of this
directory:

NN

tcl 7.0 tk3.3 expect2.1

» Keep version number in directory name, so there can
be multiple versions of the same package.

* Use GNU aut oconf i g for configuration.

* Create library as well as application (more below).

Managing Extensions, slide 7

| ncor por ating Extensions

In package:
* Define one initialization procedure:
Expect I nit
Dp Init

* Init proc takes single argument: Tcl interpreter.

e CdlsTcl _Creat eConmand to create new
command(s) for package, performs any other
initialization for package.

To use packagein application:

* Create procedure Tcl _Appl ni t that callsal
relevant initialization procedures, invokes
application’s startup script.

e Link with relevant libraries.

* No need to modify mai n: it calls
Tcl _Appl nit; Tcl and Tk provide default

Tcl _Applnit.

Managing Extensions, slide 8

Dynamic Linking

Goals:
 Avoid proliferation of binaries,

» More flexible: can add new packages dynamically
without recompiling.

 Shared libraries save memory.

How?

* New Tcl command:
| oad library initProc

* | will solicit implementations for various systems,
include themin Tcl releases.

 Auto-load support (next slide).

* Must resolve differences in how to compile
shared libraries for different systems.

Managing Extensions, slide 9

Changesto Auto-Loading

Current approach:

e t cl | ndex files have fixed format:
tk_di al og dial og.tcl

procedure fileto
name source

* Index files are parsed, not evaluated.

New approach for Tcl 7.0:

 Index fileswill be evaluated:

set auto_index(tk_dialog) \
"source $dir/dialog.tcl"”

 Result: 3-4x faster, more flexible.
 Should accommodate TclX style of auto-loading?

» Caninvokel oad instead of sour ce to auto-load
shared libraries.

Managing Extensions, slide 10

Summary

» Extension builders should conform to conventions.

 Convert non-conformant packagesif possible (at next
incompatible release?).

* It should become much easier to take advantage of all
the contributed packages.

Managing Extensions, slide 11

