such casesitissufficient to useaTk application that flusheseach lineor usesthe send
mechanism, but this means that some good Unix tools cannot be used sometimes.

The third problem concernsthe send primitive. In the file manager application ac-
cessis needed to this primitive by the front— and back—ends, but they do not require
windows. This either leads to redundant wi sh windows or to yet another custom—
built Tk interpreter. It would be desirableif some similar communication model was
available at thetcl level.

Conclusion

Thispaper has shown that atypical file manager hol dsthe seeds of anumber of other
applications and can be easily generalised to encompass them. The choice of imple-
mentation framework can have quite an effect on the ease of this, and Tcl/Tk isquite
appropriate for building small, reusable communicating applications.

References

[1] J. D. Newmarch, “XmFm — An X/Motif File Manager,” Proc AUUG Confer-
ence, 1993 (to appear).

[2] P. Haahr, B. Rakitziz, *“ Es: A shell with higher order functions,” Usenix Confer-
ence Poceedings, Winter 1992.

[3] H. R. Williamson, ** Teach Yourself Chinese,” Hodder and Stoughton, 1947

—10-—

s | classify+display+sel ect —sendTo refine &
refine | sh

This could be useful if one wanted many versionsof cl assi f y+di spl ay+se-
| ect to be able to run simultaneously, but at most one copy of r ef i ne: it could
check on the number of other copies running and exit if already running. Each copy
of cl assi fy+di spl ay+sel ect would send to the only running copy of r e-
fine.

The classification and refinement languages are implemented as tcl files that are
sourced into the component. Some of the file will consist of commands understood
by the component. The cl assi f y+di spl ay+sel ect application defines the
procedure

classifier ?class ?classifier—function ?bitmp

which defines a new class, its recogniser function and its bitmap to the cl assi -
fy+di spl ay+sel ect application. The configuration file can then contain en-
triessuch as

classifier Makefile {regexp {"[M1 akefile$}} \
@mukefil e. xbm

whichwill runther egexp command with suitable parametersto recognisetheclass
Makefilewithbitmap makef i | e. xbm Any defined tcl procedure can be used, and
any procedures needed that are not already in tcl can be defined in the configuration
files. Thisremoves any limits from the configuration languages.

Status of | mplementation

Some of these ideas were tested in an Xt/Motif version, which has since been dis-
carded. Modifications have been made to wish so that it behaves as described when
itisiw sh. The two basic applications ““cl assi fy.tk” and “refi ne. tk”
have been implemented, although they currently only take options from the com-
mand line instead of from the resource database.

This allows simple compound applications to be built such as the address book and
jukebox. They can be run with each component as a separate application, or sourced
together into a single toplevel window. The file manager requires a more complex
“front—end” feeding directory information into the pipeline (or composite applica
tion) and a ** back—end” that either executes commands or sends chdir information
back to the other stages. This has been implemented to the basic functionality of
xnf m but without many of the** bellsand whistles’. Thesecan beaddedfairly easily.

Problems of | mplementation

The lack of modularity in tcl isaproblem asit forces the application writer to pay
close attention to naming conventions.

The Unix pipeline generally works okay. However, it isnot ideal for interactive pro-
grams due to the buffering that can exist in 1/O buffers and in the pipeline itself.
Where applicationsin the pipeline are line—buffered or raw there is no problem, but
some do not allow this buffer control. This then results in a stage ‘“hanging” as it
awaits its input. For example, commands such as sed can cause buffer delays. In

)

Imagine Crippled Inside

<

Jealous Guy Mo Soldier

Figure 5: A jukebox

tinueto read from standard input. Thisisneeded for thesetools, but isalso of general
use asit allows command line interaction with any wi sh based system*.

To alow more sophisticated communication than is given by the pipeline, use is
made of the Tk send mechanism. Each component is built so that its major actions
are controlled by tcl procedures. These form the publicinterface to each component.
Thelack of ahiding mechanismsin tcl causes problemswith thisand some*“ hiding—
convention” is needed to deal with this.

By default, the applications read from standard input and write to standard output.
The input is expected to be tcl procedure calls that the procedure understands, and
the output has the syntax of tcl procedure calls that hopefully can be understood by
alater component of the system. In addition, as explained, an application can accept
Tk send input. To direct the output in a suitable manner, these applicationsall have
acommand line option—sendTo appl i cati on. If thisis defined, then output
is directed to the named application instead of to standard output.

Thiscommunication model allowsagreat deal of flexibility, sufficient to overcome
the communication problem for afile manager: the ** action” command at the end of
the pipelinesimply sendsa*‘ cd” message and then an application specific *“ refresh”
to each earlier component of the pipeline. Indeed, it even allows oneto throw bits of
the pipeline away:

* An Internet posting also suggested usingcat file — | w sh This
avoids modificationsto wi sh, but loses the interactive prompt.

Figure 4: Chinese ideographs from words

| mplementation

A prototype of thissystemwasbuilt by breakingthex nf mcodeinto the separatebits.
Thiswas done using the Xt toolkit with Motif interface. Shell programming expres-
sionswere used for the classification language (with the choice of shell made by the
user), but for all the other designissues, this choice of system implementation failed.

A full implementation isnow under way using Tcl/Tk. The componentsareall being
built as files of procedures which can be incorporated (using the tcl command
sour ce)intolarger applications. To make astandal one component, thefileisincor-
porated into into a simple framework that basically adds a‘* quit” button. To make
composite applications, more than one of these procedure files is sourced.

Either Tcl or the shells allow standalone components to be connected in pipelines.
Thismeansthat a standal one component should be able to read from standard input.
A simplemodificationtothewi sh interpreter was made so that if the comand name
isi wi sh (interactive wish) then it will both read acommand line file and then con-

Blgs 5T"Ff

John Brown Paula Hardand

ST[IHE SHLES

Jim Roberts Jane Smith

i map address

Figure 3: Departmental information

Thiswould be harder to do if each component required acomplicated framework be-
fore it could be used. The Unix application level seems appropriate.

On the other hand if each graphical component were stand—alone, it would lead to
very fragmented interfaces with bits of a composite application all over the screen.
Some means needs to be found to link them into higher— evel applications.

The second issue concerns the classification and refinement languages. x nf muses
shell expresions whereas X. deskt op and Looking Glass use proprietary lan-
guages. For full generality, something with the power of areal programming lan-
guage is needed, but it should not be a one—off language just for this system.

Thethird issue concernsthe pipeline model. While thisworkswell in many applica-
tions, it actually failsfor one action common in file managers: changing directories.
A change of directory hasto be fed to all components, so that the data comes from
the new directory, the classification is performed in theright directory (for example,
iIf the classification language usesthetype of afile, it must be ableto accessthefile),
and the action must be performed in the correct directory. Thisrequires amethod to
inform all componentsof the directory change. Thisisvery hardinapipeline, unless
“special case” methods are built into the components to recognise such directory
changes. Thepointisnot that it can’t be done, but the methodsto solveit for pipelines
don’t generalise easily to new situations.

]

Imakefile Jealous.bmp

oo o

Makefile Makefile.hak

]

Figure 2: A ssimple filemanager

people. The classification could beinto department, with asymbol typical of that de-
partment shown, The classification and display would show names and the depart-
ment they belong to. Selection of any personwithin thislist could then lead to refine-
ment: choose thework phone number of the person, their home phone number, amap
of how to reach them, or other information. The final component (instead of just a
shell) would actually perform the appropriate action. Thisis shown in Figure 3.

A second useisasan aid to languagelearning. In learning languageswith ideograph-
ic character sets such as Chinese, onefirst learns a Romanised system([3]. After this
comestheassociationwiththeideographs. Using aclassification whereaRomanised
phraseis matched to itsideograph gives an ‘“ ideograph generator,” asshownin Fig-
ure 4.

Another useisasjukebox. A list of composer names could bethedata, with their pic-
ture astheicon. Selection of acomposer could then bring up alist of their works, and
further selection of one of these woul d send the name of thework to an audio applica-
tion that would play it. Thisis shown in Figure 5.

Further Design I ssues

Before proceeding to implementation, there are anumber of design issuesthat need
to be addressed.

Thefirst of these concernsthe eventual granularity of the applications. Each compo-
nent will need to be astandal one application so that it can be combined with any other
applicationsthat theuser has. For example, theuser may wish to haveafilter between
selection and refinement, perhaps based on access permissions:

s | classify+display+select | security-filter |
refine | sh

Thethird component of afile manager issimple: it allows selection of instances. The
only variation between managers seemsto be whether they allow multiple selection
or single selection only.

The next component is common to all file managers, but has different expressions
in each: an action may be performed on an instance of an object. xdt mallows the
user to select a task situation, and apply any element of the task to the instance.
X. deskt op (likeMicrosoft File Manager) allowsonly asingleapplicationto apply
to an instance. Both Looking Glass and xnf mallow a (fixed) range of applications
to apply to an instance. Obviously, | prefer the xnf mmodel: it reflects the idea that
an object has many methods that can apply to it; the object contains the information
about its methods, versus the Microsoft version in that a single application contains
al of the methods applicable to a object.

Connection betwen Components

These three components appear to be inseparable: display, classification and selec-
tion of instance data. The choice of datain file managers depends on filters. separat-
ing this out gives amore general component.

xnf mand Looking Glass allow a refinement of instance methods; xdt mallows
selection of task method; the others only have single action. The general caseis. re-
fine a selected instance into a method for the object.

Finally the chosen method on the selected object must be acted on.

A filemanager thus consists of four components: data, classification+display+selec-
tion, refinement, and action.

The file managers considered so far are monolithic, performing all of these compo-
nents internally. If they are separated out, how will they communicate? There are
heapsof IPC methods. The simpleUnix pipelinemodel decribesthemodeapparently
needed:

s | classify+display+select | refine | sh
Generalisation

Breaking the file manager into components by itself allows avariety of uses. Filter-
ing may be performed by changing the input function:

ls —a | :

ls *.c *.h |
The person only interested in agraphical display of data can execute

s | classify+displ ay+sel ect

The* refine” component can be changed between asinglerefineasinf i | engr and
X. deskt op, or amultiple refine as in xnf mand Looking Glass. A file manager
built out of these componentsis shown in Figure 2. (In thisand later figures, the ob-
ject selected is highlighted by a surrounding box.

Other Uses

Of more general interest, though, is that the processes of classification and refine-
ment may be configurable. For example, the input data may be alist of names of

for display of data. For example, a common command-ine cycleisl s, vi,

., | s,wheretherepeated | s commands are due to the loss of information due
to other activities. Even binding the PageUp key tothext er mscrollbar doesn’t real -
ly help.

Problemswith File managers

File managers have nowhere near the flexibility of the command lineinterface. The
command line accessible from xnf mand Looking Glass requires extra keystrokes
or mouse actions to reach (the fastest is Met a—Cin xnf m). It would be possible to
add keyboard accelerators such as *!!” to xmfm, but such changes are adhoc, and
anyway already existin most shells. Thereal problemisthat the shellsalready dothis
well: why haveto rebuild it afresh?

All file managers take up alarge amount of real—estate in showing directories. The
addition of menu—bars, etc uses even more space. X nf muses a substantial amount
In showing the possible actionsthat can be performed on afile. On alarge high—reso-
lution screen thisis not a serious problem, but on smaller screensit is. This offends
the ““parsimony” principle that many Unix people work under. Using space when
necessary is fine, but wasting space is not.

One I nternet posting seemed to suggest that what the poster used inx nf mwasfirstly
itsgraphical display of objectsand secondly the inclusion of Roger Reynolds Drag
and Drop, which allowed xnf mto be used with other tools; the other facilitiesin
xnf mwere not mentioned —were they of any useto thisuser?If not, should they be
there?

The Components of a File Manager

The best component of a command-ine system isits flexibility. It will be hard to
duplicatethisin awindowing system. Thereforea* power user” will often still drive
out of acommand line. Where the command line loses advantages is in the display
of data. A primary component of afile manager isthis display activity.

But display of what?Display al files, or just asubset? All file managers have afilter
mechanism, which duplicates to greater or lesser extent the shell pattern matchers.
It would be far simpler to let the shell perform the match, and just use its output for

display.
Thus, the primary component is asagraphical display of distinct pieces of informa-
tion, supplied by some input source.

The information supplied isnormally categorised: for example, a different icon for
C source codefilesto theicon for tar archivefiles. The mechanismsto perform this
categorisation differ widely: xnf muses shell file patterns whereas L ooking Glass
and X. deskt op useproprietary command languagesthat can peek intofilesaswell
as perform simple pattern matches. Whatever mechanism is used, the result is aso
afeature of file managers: they classify input data into classes, with a distinct icon
for each class.

Thus, the second component of afile manager isthat it classifiesinstancesinto their
classes.

Without discarding x nf mfor the more casual user, this paper reports on aredesign
that isintended to allow the best features of command line environmentsto be used
and bring in graphical features where appropriate. It formsacomponent of a project
XBatch whichaimsat bringing graphical and command lineinterfaces closer togeth-
er.

The new design allows relevant bits of afile manager to be used where appropriate.
In addition, the bits are highly configurable and may be used in quite different ways
to the original design. The paper discusses some aternative uses such as an address
book.

X File Managers

There are a number of file managers available for X nowadays. Thereis thefi -

| engr from Sun for the OpenLook environment, Looking Glass from Visix,
X. deskt op from IXI, the freely available xdt m and the freely available xnf m
from the author.

These file managers all share common features:. they give agraphical display of the
filesin adirectory, and when afile is selected allow a ** suitable” application to be
started on or using the file. Beyond this, they begin to diverge.

xdt m for example, adopts a **task oriented” model, in which the user has a set of
tools applicable to a task that can be invoked on the selected files. In a** program
building” task thetoolsare editors, compilersand debuggers, and they can be applied
to any filein the display.

X. desktop andfi | engr attach a single application to each file that can be in-
voked. xnf mand Looking Glass attach a set of applications to each file so that one
of this set can be invoked on thefile.

xnf mand Looking Glass allow direct accessto ashell interpreter from apull-down
menu for commands that are not supported directly by the file manager. L ooking
Glassand X. deskt op provide additional tools, andf i | engr exists (usually) in
the rich OpenL ook environment.

Command Linelnterpreters

The Unix shell interpreters have always been powerful, if abit quirky. The current
generation such as the Korn shell have added job control mechanisms, filename
completion and easy history editing to the standard repertoire of loops, pipes and
command evaluation. Next generation shells such ases[2] are under development.

Features such as command line editing allow repetitive tasks to be performed very
easily. When the edit/compile/debug cycle is contained within two “ up arrow” key
motionsitisnot clear that the mouse ** select and double—click” isreally animprove-
ment. In addition, random tasks can be accomplished very quickly within thismodel
by just typing adifferent command. Finally, activities can be suspended and resumed
using the job control mechanisms of these shells.

However, the command lineinterfaceisclearly not ideal. Job control is fairly crude
and was beginning to giveway to virtual consoleswhich could be switched between.
Now onecanjust switchfocusonxt er nis. Moreseriously though, they arenot good

Generalising a File Manager into an
Address Book and Other Things

J. D. Newmarch
Faculty of Information Science and Engineering
University of Canberra
PO Box 1 Belconnen
ACT 2616 Australia
email: jan@pandonia.canberra.edu.au

I ntroduction

Last year, | designed and implemented afile manager called xnf n{1] (X/Motif File
Manager —seeFigure 1). Thiswasreleased on alt.sources, and hasreceived afavour-
able reception. It has beenin use by staff and students at the University of Canberra
for some time. The next section describes x nf mand other file managersin brief.

After aconsiderable period of use, | have been ableto look at the good and bad fea-
turesof xnf m In general, the bad features are not significant but they they have had
aneffect onacertain classof user: theUnix ** power users,” who have extensive expe-
riencewith the older command lineinterface, and who have adopted the newer shells
whichextendinsubtlewaystheolder shells. For these users(myself included), x nf m
Issimply too monolithic and inflexible, and so these users continue to use a number
of xt er msrunning the Korn shell, thet csh, bash or the Z—shell.

Directory:; fusrfusrs/xsource/xmfm/

Executables - filter is =

X X <«—— programs

resall xmf i wmfm, 1.1

edit more

to to
object executahle
Files - filter is [~.1=
n
print D
TEFINES
make information]|||birtar.c < data
remove refresh TirHgr.h
dir
A
M 1 - directories
. RCS tests
= i |

Figure 1: xmfm

