
Introduction
Tcl [1][2] is a language specifically intended for
generic application control. In some applica-
tions it dominates the user’s view of the
application. Expect [3][4] is a good example of
this. Expect is always executing Tcl statements
– usually from a script. When the script ends,
Expect ends.

This type of application is common. With this
heavy reliance on Tcl, it is useful to have a de-
bugger that understands Tcl. For example, it
should be able to single-step and print values at
user discretion.

The debugger described herein works in exactly
this way. It works best with applications like
Expect that sequentially execute Tcl commands,
although it can also be used with any Tcl appli-
cation.

This paper has three parts. The first part de-
scribes the debugger in terms of how it is used in
a typical application. The second part of the pa-
per describes how the debugger can be
integrated into Tcl applications. The third part
describes the design and implementation of the
debugger.

A Debugger for Tcl Applications

Don Libes

National Institute of Standards and Technology

Abstract

Tcl is a language specifically intended for generic application control. By us-
ing it, application programmers escape the dilemma of whether to design
sophisticated application-specific languages or whether to build tools more
quickly but that are limited in flexibility. Tcl is easy for application program-
mers to use, however, up to now, there has been no general-purpose debugger
for application users.

This paper describes an implementation of a debugger for Tcl applications.
The debugger has a typical front-end but with some extremely unusual com-
mands, in part because of the features and limitations of Tcl. The debugger is
modeless, allowing users to issue Tcl and application commands along with
debugger commands. Each type of command may invoke the other, allowing
debugging to be programmed, dynamically or in advance.

The debugger is written in C and is very fast. When linked in but not used, it
does not slow applications at all. The debugger requires no modifications to
the Tcl core, and can be plugged into applications with little effort.

Keywords: Tcl, Tk, Tool Command Language, Expect, debugger, interpreter

View by the Application User
This section of the paper is a debugger tutorial
which shows the application user’s view of the
debugger. For the sake of concreteness, Expect
[1] will be used as the application. However,
any other application using the debugger will
work similarly.

Starting the Debugger

The debugger is initially invoked in an applica-
tion-dependent way. In Expect, the debugger is
started by using the flag “-D 1”. For example:

% expect -D 1 script

If the system supports the #! mechanism, the
script may also be started as:

% script -D 1

In either case, additional arguments may be sup-
plied as usual.

The user is prompted for a command. At this
point either Expect commands, Tcl commands,
or debugger commands may be entered. This is
true at all other times that the user is prompted as
well. The debugger is modeless.

The following Tcl commands illustrate that the
debugger evaluates Tcl commands as usual.

expect2.1> set m {a b c}

a b c

expect2.2> llength $m

3

expect2.3>

The command prompt is changeable by the ap-
plication or user. Here, the second number is the
Tcl history identifier. The first number is the
depth of the evaluation stack.

In the context of a script, the initial depth of the
evaluation stack is 1 but the debugger always in-
troduces a new level to the stack. Hence, we see
a “2” in the prompt.

Expect also allows the application to take initial
control. By using the flag “-D 0”, the applica-
tion runs until the user presses ^C at which time
the debugger begins running. The remainder of
this tutorial will assume that the debugger has
started up immediately from the flag “-D 1”.

Command Overview and Philosophy

The debugger commands are:

Name Description
s step into procedure
n step over procedure
r return from procedure
b set, clear, or show breakpoint
c continue
w show stack
u move scope up
d move scope down
h help

The debugger commands are all one letter. Short
procedure names are desirable in an interactive-
only application such as the debugger. In con-
trast, scripted applications rarely use one-letter
commands. The chances of name conflict be-
tween the debugger and scripted applications are
very low.

The command names are very similar and, in
some cases, identical to other popular debuggers
(gdb, dbx, etc.). Existing Tcl procedures are di-
rectly usable so there are no new commands, for
example, to print variables since Tcl already pro-
vides such commands (e.g., set, puts, parray).
The intent of the debugger is that it should be
easy to learn and use, and otherwise stay out of
the way.

The debugger uses the application’s top-level in-
teractor. In the case of Expect, for example, the
debugger uses Expect’s interact command which
prompts for commands and evaluates them.

For the purposes of describing the debugger
commands, the following script is assumed to be
nameddebug-test.exp.1 The script doesn’t do
anything useful. It merely serves to illustrate
how the debugger is used.

set b 1

proc p4 {x} {

return [

 expr 5+[expr 1+$x]]

}

1. Italics indicate something being defined.

set z [

 expr 1+[expr 2+[p4 $b]]

]

proc p3 {} {

set m 0

}

proc p2 {} {

set c 4

p3

set d 5

}

proc p1 {} {

set a 2

p2

set a 3

set a 5

}

p1

set k 7

p1

If the debugger is started at the beginning of the
script, no statements have been executed. Tcl
and application commands have global scope.

% expect -D 1 debug-test.exp

1: set b 1

expect2.1>

When a new command is about to be executed,
the debugger prints the command. It is preceded
by the evaluation stack level. “set b 1” is the
first line in the script.

The command has not yet been executed. “info
exists” confirms this.

expect2.1> info exists b

0

The “n” command – “Next”
Then command executes the pending command
– in this case “set b 1” – and displays the next
command to be executed.

expect2.2> n

1: proc p4 {} {

return [

expr 5+[expr 1+$x]]

}

expect2.3> info exists b

1

The command “info exists b” confirms that b has
been set. The procedure p4 is about to be de-
fined.

expect2.4> n

4: p4 $b

expect5.5>

The procedure p4 has now been defined. The
next command to be executed is p4 itself. It ap-
pears in the statement:

set z [

expr 1+[expr 2+[p4 $b]]

]

The three sets of braces introduce three new lev-
els on the evaluation stack, hence the stack level
in which p4 is about to be executed is shown as
“4”. 1

Notice that the evaluation stack level does not
affect the scope. We are still in the top-level
scope and b is still visible.

expect5.5> info exists b

1

The argument to p4 is $b. The value of this can
be evaluated by using set or puts.

expect5.6> set b

1

expect5.7> puts $b

1

Another n command executes p4, popping the
stack one level. Additional n commands contin-
ue evaluation of the “set z” command, each time
popping the stack one level.

expect5.8> n

3: expr 2+[p4 $b]

expect4.9> n

2: expr 1+[expr 2+[p4 $b]]

1. Whether the word “stack” refers to procedure
call stack or evaluation stack should either be
explicit or clearly implied by context.

expect3.10> n

1: set z [

expr 1+[expr 2+[p4 $b]]

]

expect2.11>

The “s” command – “Step”
The n command executes a procedure atomical-
ly. It is possible to step into a procedure with the
s command.

We’ll rewind this scenario to just before p4 is
about to be executed.1

4: p4 $b

expect5.5> s

7: expr 1+$x

expect8.6>

“expr 1+$x” is the first command to be executed
inside of p4. It is nested inside of two brackets,
plus the procedure call of p4, so the stack level is
increased by three.

After the s command, the debugger stops before
the first command in the procedure and waits for
more interactive commands.

If the command that is about to be executed is
not a procedure, then s and n behave identically.

Both s and n take an optional argument in the
form of a number describing how many com-
mands to execute.

For example:

s 2

s 100

s $b

s [expr 2+[p4 $b]]

The arguments are evaluated according to the
usual Tcl rules because s and n are commands
known to Tcl.

The debugger will not interrupt procedures in-
voked from the command-line. This is usually
the desired behavior, although it is possible to
change this.

1. There is no actual command to “rewind” com-
mands, alas.

The “w” Command – “Where”
In the current scenario, we are about to execute
“expr 1+$x” in the procedure p4. We can re-
mind ourselves of this by displaying the stack of
procedure scopes using thew command.

7: expr 1+$x

expect8.6> w

 0: expect -D 1 debug-test.exp

*1: p4 1

 7: expr 1+1

The first line describes scope 0. This is the top-
level scope of the file itself, and the command
used to invoke the program is shown. The sec-
ond line describes scope 1 which is the
invocation of procedure p4. The last line is not a
scope but just repeats the evaluation stack level
and the command about to be executed.

Notice that when w prints commands, they are
displayed using the literal values of each param-
eter. In contrast, when the debugger
automatically prints out the next command to be
executed, the command is printed as it was origi-
nally entered in the script. For example, the
debugger initially stopped and printed “expr
1+$w”, but the same instruction shows as “expr
1+1” in the output from the w command.

The Current Scope
Executing fourteen steps (via “s 14”) brings us
to the first command in procedure p3.

expect8.8> s 14

4: set m 0

expect5.9> w

 0: expect -D 1 debug-test.exp

 1: p1

 2: p2

*3: p3

 4: set m 0

The asterisk denotes that p3 is thecurrent scope.
We can now execute Tcl commands appropriate
to the scope of p3. This includes commands
such as global, uplevel, and upvar.

expect5.10> uplevel {set c}

4

The “u” and “d” commands – “Up”
and “Down”
The current scope can be changed by the u and d
commands.u moves the current scope up, while
d moves it down. Interactive variable accesses
always refer to the current scope.

expect5.11> u

expect5.12> w

 0: expect -D 1 debug-test.exp

 1: p1

*2: p2

 3: p3

 4: set m 0

expect5.13> set c

4

Both u and d accept an argument representing
the number of scopes by which to move. For ex-
ample, “u 2” moves from scope 2 to scope 0.

expect5.14> u 2

expect5.15> w

*0: expect -D 1 debug-test.exp

 1: p1

 2: p2

 3: p3

 4: set m 0

An absolute scope is also accepted in the form of
“#” followed by a scope number, such as “#3”.

expect5.16> u #3

expect5.17> w

 0: expect -D 1 debug-test.exp

 1: p1

 2: p2

*3: p3

 4: set m 0

When an absolute scope is named, either u or d
may be used, irrespective of which direction the
new scope lies.

Moving the scope does not affect the command
that is about to be executed. If a command such
as s or n is given, the current scope is automati-
cally reset to whereever is appropriate for
execution of the new command.

The “r” Command – “Return”
The r command completes execution of the cur-
rent procedure. In other words, it stops after the
current procedure returns.

expect5.18> r

3: set d 5

expect4.19> w

 0: expect -D 1 debug-test.exp

 1: p1

*2: p2

 3: set d 5

expect4.20> r

2: set a 3

expect3.21> w

 0: expect -D 1 debug-test.exp

*1: p1

 2: set a 3

expect3.22> r

1: set k 7

expect2.23> w

*0: expect -D 1 debug-test.exp

 1: set k 7

expect2.24> r

nowhere to return to

The “c” Command – “Continue”
The c command lets execution of commands
continue without having to single-step. In the
scenario so far, given a command anywhere, the
program would continue until the script ends and
the shell prompt appears.

expect2.25> c

%

The c command is also useful in other ways. Af-
ter setting breakpoints, the program can be
continued until it hits a breakpoint. The program
can also be continued until a signal occurs, such
as by the user pressing ^C.

The “b” Command – “Breakpoint”
Prior commands have shown how to execute a
fixed number of commands or procedure calls.
In contrast, breakpoints provide a way to stop
execution upon a condition. The conditions in-
clude:

• line number and filename matching

• expression testing

• command and argument name matching

Breakpoint by Line Number and Filename1

Line numbers and filenames are the most com-
mon way to specify a breakpoint. This form is
correspondingly the most compact. For example
the following command causes execution to
break before executing line 7.

expect2.26> b 7

0

After creation of a breakpoint, an integer identi-
fying the breakpoint is printed. The reason for
this will be described later.

By default, the line number refers to the file as-
sociated with the current scope. A filename may
be used to refer to a different file. A colon is
used to separate the filename and line number.

expect2.27> b foo.exp:7

Breakpoint by Expression

It is possible to break at a line only when an ex-
pression is true. For example, the following
command causes execution to break at line 7
only when foo is greater than three.

expect2.28> b 7 if {$foo>3}

Expressions are the usual Tcl syntax and may be
arbitrarily complex.

No breakpointing occurs inside of the evaluation
of breakpoint expressions (unless another break-
point dictates this).

Breakpoint by Pattern Match

It is also possible to define breakpoints by pat-
tern matching on the command or arguments.
Regular expressions are introduced by the flag “-
regexp” (commonly abbreviated “-re”)2. The
following command stops if the string p4 ap-
pears within the command:

expect2.29> b -re "p4"

1. Breakpoints by line number and filename are
not currently supported. See “Line Numbers” on
page 13 and “Current Limitations and Future
Work” on page 15.

0

With our sample file, we can see the results of
this:

% expect -D 1 debug-test.exp

1: set b 1

expect2.1> b -re "p4"

0

expect2.2> c

breakpoint 0: -re "p4"

1: proc p4 {x} {

 return [

expr 5+[expr 1+$x]]

}

expect2.3> c

breakpoint 0: -re "p4"

4: p4 $b

expect5.4> c

breakpoint 0: -re "p4"

3: expr 2+[p4 $b]

expect4.5> c

breakpoint 0: -re "p4"

2: expr 1+[expr 2+[p4 $b]]

The first breakpoint occurred upon the definition
of p4. The second occurred when p4 was called.
Two more breakpoints occurred only because p4
was mentioned in the command.

With appropriate regular expressions, any one of
these can be selected by itself. For example, to
stop only on definitions:

expect2.1> b -re "proc p4 "

To stop only on a call to p4 itself:

expect2.2> b -re "^p4 "

To stop only on commands which call p4:

expect2.3> b -re "\\\[p4 "

The complexity of this last example is, perhaps,
somewhat ameliorated by the unlikelihood of it
ever being used. It is more shown simply for
completeness. The point is, the ability to match
on regular expressions is extremely powerful.

2. The debugger permits all flags to be abbrevi-
ated to the smallest unique prefix. For example,
“-regexp” can actually be abbreviated “-r”. The
usual quoting conventions around patterns should
be observed. In this example, the quotes around
p4 can be omitted.

Multi-line patterns may be matched in the usual
way – using characters such as \n and \r.1

Glob-style matching is available by using the
flag -glob instead of -regexp. It works exactly as
in Tcl’s case command. Since glob matches an
entire string by default, the equivalents to the
previous example look slightly different. Note
the asterisks.

To stop only on definitions:

expect2.4> b -glob "proc p4 *"

On calls to p4:

expect2.5> b -glob "p4"

On commands which call p4:

expect2.6> b -glob "*\\\[p4 *"

Expressions can be combined with patterns just
as if they were with line numbers. For example,
to break on a call to p4 only when foo is greater
than three:

expect2.7> b -glob p4 if {$foo>3}

Regular expression patterns save the strings
which matched any patterns in the arraydbg.
The part of the command matched by the entire
pattern is saved in $dbg(0). Up to 9 parenthe-
sized subpattern matches are stored in $dbg(1)
through $dbg(9).

For example, the name of a variable being set
can be accessed as $dbg(1) after the following
breakpoint:

expect2.8> b -re {^set ([^])+ }

This can be used to construct more sophisticated
breakpoints. For example, the following break-
point occurs only when the variable being set
was already set.

expect2.9> b -re {^set ([^])+ }
if {info exists $dbg(1)}

Breakpoint Actions

Breakpoints may trigger actions. The default ac-
tion prints the breakpoint id and definition. It is
possible to replace this action with any Tcl state-
ment. As an example, the following command

1. Using braces instead of double quotes permits
the previous pattern to be simplified to {\[p4 }.
However, the braces prevent the possibility of
explicitly matching escaped characters such as \n.

defines a breakpoint which prints a descriptive
message whenever the variable a is being de-
fined:

expect2.1> b -re "^set a " then {

+> puts "a is being set" 2

+> puts "old value of a = $a"

+> }

When run, it looks like this:

expect2.2> c

a is being set

2: set a 2

expect3.3> c

a is being set

old value of a = 2

2: set a 3

expect3.4> c

a is being set

old value of a = 3

2: set a 5

Each time the breakpoint occurs, the old and
new value of a are displayed. Notice that the
first time the breakpoint occurred, a was not de-
fined. In this case, $a was meaningless and the
puts command was not executed. If there had
been further statements in the breakpoint, they
would also have been skipped. Implicit error
messages generated by actions are discarded.

Error messages generated in breakpoint expres-
sions are also discarded. It is assumed that such
errors are just variables temporarily out of scope.

By default, breakpoints stop execution of the
program. It is possible to tell the debugger not to
stop by using the commands c, s, n, or r from
within an action.

This can be used to trace variables. To illustrate
a different effect, the following breakpoint prints
out the name of each procedure as it is being de-
fined.

expect2.1> b -re “proc (p.)” then
{

+> puts “proc $dbg(1) defined”

+> c

2. Expect prompts with “+>” when an incomplete
command has been entered.

+> }

0

The c command in the last line, allows execution
to continue after each breakpoint.

expect2.2> c

proc p4 defined

proc p3 defined

proc p2 defined

proc p1 defined

The following breakpoint causes the debugger to
break after the return of any procedure that has
called p4.

expect2.1> b -glob "p4" then "r"

The following command prints out the string
“entering p4” when p4 is invoked. Execution
continues for four more steps after that.

expect2.2> b -re "^p4 " then {

+> puts "entering p4"

+> s 4

+> }

Multiple breakpoints can occur on the same line.
All corresponding actions are executed. At most
one debugger command will be executed, how-
ever. For example, if breakpoints trigger
commands containing both “s 1” and “s 2”, only
the second (or last in general) will have any ef-
fect.

Limitations in Breakpoints Actions and Inter-
active Commands

Debugger commands specified in a breakpoint
action occur only after all the breakpoints have
completed. For example, the following break-
point appears to print out the old and new values
of every variable about to be set.

expect2.1> b -re {^set ([^]+) }
then {

+> puts “old $dbg(1) = [set
$dbg(1)]”

+> n

+> puts “new $dbg(1) = [set
$dbg(1)]”

+> }

However, the debugger does not actual execute
the next procedure call in the program until the
breakpoint action completes. This breakpoint

therefore prints the old value twice, incorrectly
claiming that the latter is the new value.

expect4.7> c

old a = 2

new a = 2

In this case, it is possible to get the new value by
just omitting the last puts. The debugger will
then automatically print the new value as part of
echoing the next command to be executed.

expect4.7>

old a = 2

2: set a 3

This example illustrates a limitation of the de-
bugger. The debugger does not use a separate
thread of control, and therefore does not allow
arbitrary automation of its own commands. For
more discussion on these limitations see “Cur-
rent Limitations and Future Work” on page 15.

General Form of Breakpoints

Expressions and actions may be combined. This
follows the syntax of Tcl’s if-then (no “else”).
For example, the following command prints the
value of $foo whenever it is non-zero.

expect2.1> b if {$foo} then {

puts "foo = $foo"

}

The general form of the breakpoint command
permits up to one location (specified by pattern,
or line number and filename), one expression,
and one action. They must appear in this order,
but are all optional.

If a location is provided or the if-expression
doesn’t look like a line number and/or filename,
the “if” token may be omitted. If an if-expres-
sion has already appeared, the “then” token is
also optional. For example, the following com-
mands have the same effect:

expect2.1> b if {$foo} then {

+> puts "foo = $foo"

+>}

0

expect2.2> b {$foo} {

+> puts "foo = $foo"

+>}

1

When the first argument resembles both a line
number and expression, it is assumed to be a line
number. The following command breaks on line
17:

expect2.3> b 17

2

Listing Breakpoints

If no arguments are supplied, the b command
lists all breakpoints. The following example as-
sumes the previous three breakpoints have been
set and creates two more. Notice that break-
points zero and one are identical.

expect2.4> b -re "^p4"

3

expect2.5> b zz.exp:17 if {$foo}

4

expect2.6> b

breakpoint 4: zz.exp:23 if {$foo}

breakpoint 3: -re "^p4" if {^p4}

breakpoint 2: b 17

breakpoint 1: if {$foo} then {

puts "foo = $foo"

}

breakpoint 0: if {$foo} then {

puts "foo = $foo"

}

Each breakpoint is identified by an integer. For
example, breakpoint four occurs if $foo is true
just before line 23 is executed in file zz.exp.

When multiple breakpoints occur on the same
line, the actions are executed in the order that
they are listed by the b command.

Deleting Breakpoints

A breakpoint can be deleted with the command
“b -#” where # is the breakpoint number. The
following command deletes breakpoint 4.

expect2.7> b -4

All breakpoints may be deleted by omitting the
number. For example:

expect2.8> b -

The “h” command – “Help”
The h command prints a short listing of debug-
ger commands, arguments and other helpful
information.

Changing Program Behavior
When the debugger is active, the variable dbg is
defined in the global scope. When the debugger
is not active, dbg is not defined. This allows Tcl
applications to behave differently when the de-
bugger is running.

Changing Debugger Behavior
By default, long commands are truncated so that
the debugger can fit them on a line. This occurs
when the debugger prints out a command to be
executed and also in the listing from the w com-
mand.

The w command has a -width flag which can
change the current printing width. It takes a new
width as an argument. For example to display
long commands (such as procedure definitions):

expect2.2> w -w 300

Because of the parameter substitutions, the w
command may try to display extremely long
lines. Imagine the following script:

puts [exec cat /etc/passwd]

When the debugger is run, w command output
will be truncated unless the printing width is
quite large.

2: exec cat /etc/passwd

expect3.1> s

1: puts [exec cat /etc/passwd]

expect2.2> w

*0: expect -D 1 debug-test3.exp

 1: puts {root:Xu.VjBHD/xM7E:0:1:

Operator:/:/bin/csh

nobody:*:65534:65534::/...

expect2.3> w -w 200

expect2.4> w

*0: expect -D 1 debug-test3.exp

 1: puts {root:Xu.VjBHD/xM7E:0:1:

Operator:/:/bin/csh

nobody:*:65534:65534::/:

daemon:*:1:1::/:

sys:*:2:2::/:/bin/csh

bin:*:3:3::/bin:

uucp:*:4:8::/var/spool/uucppubli

c:

news:*:6:6::/var/spool/news:/
bin...

expect2.5>

When output is truncated, an ellipsis is appended
to the end. The default width is 75 which allows
some space at the beginning of the line for the
procedure call depth information.

By default, no other output formatting is per-
formed. But even short statements can cause
lots of scrolling. The following declaration of
p4 is less then 75 characters but still takes sever-
al lines.

% expect -D 1 debug-test.exp

set b 1

expect2.1> s

1: proc p4 {} {

return [

expr 5+[expr 1+$x]]

}

The -compress flag with argument 1 tells the de-
bugger to display control characters using
escape sequences. For example:

expect2.2> w -c 1

expect2.3> w

*0: expect -D 1 debug-test.exp

 1: proc p4 {x} {\n\treturn [\n\t
expr 5+[expr 1+$x]]\n}

The compressed output is useful for preventing
excessive scrolling, and also for displaying the
precise characters that should be used in order to
match patterns in breakpoints.

To revert to uncompressed output, use the same
flag with value 0.

expect2.4> w -c 0

With no value specified, flags to the w command
print out the current value.

expect2.5> w -c

0

expect2.6> w -w

75

View of the Application
Programmer
This section describes how to incorporate the de-
bugger into a Tcl application.

1) Include the fileDbg.h in any source that
makes calls to the debugger.

#include "Dbg.h"

2) To start the debugger, callDbg_On. This
does not have to be called at program start but
can be called at any time.1

void

Dbg_On(

Tcl_Interp *interp,
int immediate);

If the “immediate” parameter is 1, the debugger
begins interacting with the user immediately.
Otherwise, the debugger waits until a new com-
mand is about to be executed by Tcl_Eval.
Forcing the debugger to begin interacting imme-
diately is useful in slow systems calls such as
“read”.

Typical places to call Dbg_On are:

SIGINT Handler

By invoking Dbg_On on receipt of a signal, the
user can gain control at any time during program
execution.

As an example, Expect enables this using the
command-line argument -D 0. Once the debug-
ger is running, SIGINT can still be used to
regain control.

Program Start-up

By invoking Dbg_On at program start, the user
gains control over the application immediately.

As an example, Expect uses the argument “-D 1”
to start this way.

By Application Command

Dbg_On may be called by an application com-
mand. A script may then start the debugger

1. Dbg_On should not be called directly from a
signal handler but indirectly through Tcl’s signal
handling mechanism.

interaction when the command appears in the
script.

The debugger does not create a command name
association because it has to exist in order to in-
voke the debugger. Also, because this is the one
command name that will always be present in
the application, choosing it is best done by the
application writer. An example definition might
be the name “debugger”, using the arguments 0
and 1 similarly to the -D flag, described earlier.
But all sorts of other behavior could conceivably
be envisioned.

Dbg_Off disables any activity by the debugger.
All debugger command names and variables are
removed from the interpreter. Dbg_On may be
called repeatedly without error before calling
Dbg_Off.

void

Dbg_Off(

Tcl_Interp *interp);

Dbg_Active returns 1 or 0 depending on whether
the debugger is on or off.

int

Dbg_Active(

Tcl_Interp *interp);

Several functions are available to customize the
debugger. They are described below.

Dbg_ArgcArgv informs the debugger of the
command line used to invoke the application. It
is used to display the first line of the stack. If the
“copy” parameter is 1, the argv array will be
copied to a new area of memory. This is useful
with applications (e.g., Tk) which modify the
argv array.

char **

Dbg_ArgcArgv(

int argc,

char *argv[],

int copy);

A pointer to the new memory is returned so that
it can be freed when the debugger is no longer in
use. The individual elements are not reallocated
and should not be freed. 0 is returned if no
memory is allocated.

Dbg_Interactor names a function that will be
called by the debugger to interact with the user.

Dbg_InterProc *

Dbg_Interactor(

Tcl_Interp interp,

Dbg_InterProc *interactor)

Dbg_Interactor allows the debugger to have the
same look and feel as that of the application it-
self. For instance, Expect uses its own interactor
by calling:

Dbg_Interactor(

interp,

exp_interact);

Dbg_InterProc is defined as:

typedef int (Dbg_InterProc)

(Tcl_Interp *interp);

If an application has no interactor, a very simple
interactor (similar to that in tclTest) is provided
automatically. The default interactor reads its
input from the standard input.

Interactors should prompt for new commands
and evaluate them. If commands return
TCL_OK or TCL_ERROR, the interactor should
simply reprompt for more commands. (Frequent
user errors should be expected during interac-
tion.) If commands return TCL_RETURN, the
interactor should return TCL_OK. The behavior
for commands which return other return values
is undefined.

Dbg_Interactor returns the previous definition of
its interactor argument.

Dbg_IgnoreFuncs names a function that will be
called by the debugger to decide what functions
should be ignored.

Dbg_IgnoreFuncsProc

Dbg_IgnoreFuncs(

Tcl_Interp *interp,

Dbg_IgnoreFuncsProc

*ignoreproc);

Dbg_IgnoreFuncsProc is defined as:

typedef int(Dbg_IgnoreFuncsProc)

(Tcl_Interp *interp,

 char *funcname);

If funcname should be ignored, (*ignoreproc)(
funcname) should return 1, otherwise it should
return 0.

For instance, Expect evaluates the Tcl procedure
“prompt1” each time it prepares to prompt the
user and “prompt2” if the user has entered a par-
tial command. Expect’s procedure to ignore
functions is defined as:

static int

ignore_procs(char *s)

{

return(

(s[0] == 'p') &&

(s[1] == 'r') &&

(s[2] == 'o') &&

(s[3] == 'm') &&

(s[4] == 'p') &&

(s[5] == 't') &&

((s[6] == '1') ||

 (s[6] == '2')) &&

 (s[7] == '\0'));

}

While avoiding strcmp may be excessive, this
function should nonetheless be written efficient-
ly since it is called very frequently.

Implementation
This section describes some of the more interest-
ing parts of the debugger. It is not necessary to
read this in order to use the debugger effectively.

The debugger is approximately 1100 lines1 of C
(no Tcl) which compiles to 13K on a Sun 4. The
debugger is portable to any platform that already
has Tcl. The debugger requires no changes to
the Tcl core although it does require access to the
Tcl internals.

The debugger uses Tcl’s trace facility to get con-
trol before execution of every procedure. Tcl
temporarily passes control to the function de-
bugger_trap. This function determines whether
actions should occur, whether user interaction
should occur, and whether execution should con-
tinue.

1. The code has a dearth of comments, hopefully
somewhat ameliorated by this paper.

The debugger_trap function can be thought of as
three distinct parts that nonetheless work togeth-
er very closely:

prelude: Determine if the debugger should
interact with the user, or return to
continue execution of the current
function.

interactor: Let the user interact with the Tcl
environment.

postlude: Manipulate the environment, per-
haps letting the user interact
again, or returning.

In more detail, theprelude’s primary job is to re-
turn control if possible, continuing execution of
the current command. It attempts to do this as
quickly and efficiently as possible, since this
code is called upon every trap whether or not it
inevitably leads to user-interaction.

For example, there is no reason to trap on debug-
ger commands. They have to be executed in
order for the debugger itself to run. But Tcl pro-
vides no selective trap mechanism, so the
prelude simply has to return in such cases.2 The
prelude also returns if the command about to be
executed is interactive (i.e., executed from the
debugger interaction) or a function that the ap-
plication has requested be ignored.

The prelude next evaluates all of the break-
points. If all breakpoints are unsuccessful or all
successful breakpoints have actions, the prelude
returns.

The prelude then checks if the previous user
command was n, s, c, or r. If so, the environment
is examined to see if the requested number of
steps occurred, the requested stack level was
reached, etc. If the request was not satisfied, the
prelude returns.

2. This is not a criticism of Tcl. There is no point
in Tcl providing such functionality since it would
require a callback to a user routine anyway. This
two part decision and execution process is more
efficiently performed by combining them into
one function, as in debugger_trap here.

If the prelude has not returned at this point, the
next phase of the debugger_trap function is en-
tered: the interactor.

The interactor executes debugger commands as
well as all other Tcl and application commands.
Very little special processing is performed.
Commands are passed directly toTcl_Eval . If
the command returnsTCL_ERROR, the interactor
ignores it, and continues interacting with the
user. It is expected that users will make mistakes
while interactively typing commands.

The debugger commands themselves are simple.
They record their arguments and return. This
may seem surprising, but the fact is that the com-
mands all execute in the wrong context. The
current context is the debugger command, and
depending on how the command was originally
invoked by the user, can be arbitrarily deeply
nested beyond the next command in the applica-
tion to be executed. Getting back to the correct
context from a debugger command is very indi-
rect and complicated.

In order for the debugger to get back to the right
context, the interactor exits after each debugger
command. This is forced by having the debug-
ger commands end by returning TCL_RETURN
rather than TCL_OK. The interactor then passes
control to the postlude.

Thepostlude processes any requests made by the
user while in the interactor. After processing,
the interactor is recalled for more user com-
mands, ordebugger_trap returns entirely.

For example, theu andd commands set the de-
sired scope and then pass control back to the
interactor. The execution scope is later restored
beforedebugger_trap returns.

Accessing Tcl Internals and Other
Problems
The debugger uses Tcl’s documented interfaces
whenever possible. Undocumented interfaces
were used or built in a few cases. This section
describes these and other problems encountered
while writing the debugger.

Scopes

Implementation of the u and d commands re-
quired the ability to arbitrarily walk up or down
the procedure call stack. Initially implemented
with upvar, this ultimately proved too unwieldy.

Tcl provides support for searching up the proce-
dure call stack through an internal function
called TclGetFrame. A new function was con-
structed to search in both directions. Called
TclGetFrame2, it takes additional arguments de-
scribing where the true stack boundaries are, as
well as where the current scope appears to be.

Several debugger commands take advantage of
the ability to directly access the scope. For ex-
ample, the r command continues execution until
the parent scope is encountered. This could
probably be implemented with a call to “info
level”, but the temptation to just compare a sin-
gle point was too great.

In general, calls to Tcl_Eval are shunned, partly
for efficiency but also because they modify the
stack. The only calls by the debugger to Tcl_Ev-
al occur when evaluating breakpoints.

Line Numbers

As of version 6.7, Tcl maintains no association
between commands and file names and/or line
numbers. In retrospect, this is clearly an over-
sight. Two possibilities seem likely:

Perhaps Tcl originally was never imagined as be-
ing used in applications to such an extent that
line numbers would be necessary to debugging.
Or perhaps, implementing line and file associa-
tions is too painful given Tcl’s philosophy “a
command is a string”. Applications may have to
provide significant effort to the Tcl core in order
for Tcl to support this.

While the current implementation of Tcl current-
ly lacks line number support, the debugger
provides all the support for it (see “Current Lim-
itations and Future Work” on page 15).

Commands and Arguments

Displaying the procedure call stack (via the w
command) is tricky in two respects.

Tcl does not explicitly keep the original repre-
sentation of a command while the command is in
execution. There is no reason for it to do so. If
the command is in a loop, for instance, it will
simply be derived again. Without a great deal of
work, it is therefore impossible to print out a
stack of procedure calls this way. Thus, Expect
prints out the values of each argument which is
all Tcl has.

In contrast, Expect prints out the original repre-
sentation whenever the debugger stops and
begins the user interaction. Both representations
are available for the next command to be execut-
ed, but the original representation is used partly
because the user can always see the other by en-
tering the w command, and partly because the
breakpoint pattern matching makes more sense
using the original source code.

Another problem is that Tcl strips off braces and
quotes while converting a command to its argv/
argc representation. Again, this is reasonable, as
the braces and quotes are not formally part of the
arguments. The debugger, however, wants to
show the user the original code, or perhaps,
something that is at least legal.

Without the quotes, simply appending the argu-
ments together is insufficient. For example, a
null list will not show up at all. Unfortunately
the original information (precisely how it was
quoted, for example) simply isn’t present. With
sufficient time and effort, it coule be reconstruct-
ed. However, since the output is destined only
for user viewing, the debugger can afford to err
in cases that users are unlikely to notice. The de-
bugger uses heuristics for reconstructing the
program output.

Other Debuggers
This debugger can be compared to Karl Lehen-
bauer’s debugger [5] (from hereon referred to as
“KD”). Besides KD and the debugger described
in this paper (from hereon referred to as “DD”)
no other Tcl debuggers have been constructed.

This comparison will be brief because KD was
never completed although it is functional. When
it first appeared, it included the proviso that it

was “the first cut of an experimental debugger”
and “a dim shadow of what is possible”.

Nonetheless, KD is very interesting because of
its differences from DD. The significant differ-
ences are as follows:

KD uses two modes: one for debugger com-
mands and one for application commands. This
avoids clashes between debugger commands and
application commands. All of the commands in
KD have, nonetheless, one and two character
names.

KD redefines the depth bound of Tcl’s trap han-
dler to achieve certain effects such as stepping
over procedure calls. DD blindly steps through
all calls simulating the same effect by repeatedly
checking the current frame pointer. This is, un-
fortunately, a requirement in order to evaluate
breakpoints below the depth bound.

KD lacks the sophisticated breakpoint com-
mands DD offers, but this is just a matter of
work. On the other hand, achieving DD’s scope
manipulation functions may well be impossible
through Tcl user-level functions.

Perhaps the most impressive aspect of KD is that
only a tiny fraction is written in C. The KD de-
bugger commands are written in Tcl. Users can
add new debugger commands or modify the ex-
isting commands which are simply stored in a
Tcl library. Because of this approach, KD is
much slower than a pure C approach. For every
user Tcl command, KD executes several debug-
ger Tcl commands.

But speed by itself is not sufficient to justify
writing so much of the debugger in C. The real
penalty is in the complexity of manipulating an
environment at the same time it is being used by
the commands manipulating it. Nonetheless, be-
ing able to write or customize the debugger
commands and functionality with Tcl commands
is very interesting and worth pursuing further.

Performance
A thorough study of the performance of the de-
bugger has not been done. Nonetheless, some
observations can be made.

Memory

The static size of the debugger has already been
stated (see “Implementation” on page 10).
When running, the debugger does not signifi-
cantly increase the in-memory size of a process.
There are no symbol tables or other debugging
information that has to be loaded. The debugger
uses nothing beyond what Tcl already provides
to a process not being debugged.

The debugger allocates memory for breakpoints
and output buffers, but this is minimal. The re-
sult is that the debugger adds approximately 1 to
2% to the size of an application. This is a far cry
from debuggers for compiled code, such as gdb
and dbx, which typically add 100 to 200%.

Time

The debugger attempts to operate as efficiently
as possible in the Tcl framework. Breakpoint
evaluation is clearly the most expensive part of
the debugger. For example, expression evalua-
tion can require numerous calls to Tcl_Eval.

The time taken to test breakpoints is governed
primarily by the complexity and number of
breakpoint expressions. Tests of simple expres-
sions (“set a 0” in a loop) suggest that the
debugger can add up to 10% to execution time
even with no breakpoints. With slower com-
mands (trig functions, system calls, etc.), the
execution time overhead drops to an insignifi-
cant fraction of the total time. With extensive
breakpoint use, the overhead can rise dramatical-
ly.

In a debugging session, it is not necessary to
have the debugger running all the time. It is pos-
sible to enable the debugger only when it is
needed, and disable it when it is no longer need-
ed or until needed again. When the debugger is
not enabled, it uses no time whatsoever. This
technique can help reduce the impact on run-
time for some types of debugging.

Current Limitations and
Future Work
Experience will undoubtedly prompt many
changes and enhancements. This section de-

scribes several things that are already
contemplated.

The support for defining breakpoints by pattern
matching was originally motivated by Tcl’s lack
of line numbers and filename. While pattern
matching is not unique to debuggers (for in-
stance, gdb offers a similar capability although
only on function names), this debugger is the
first to depend on it to such a great extent. The
power of pattern matching is sufficient that many
other traditional breakpoint specifications (for
instance, by command name) are not necessary.

If line number and filename support is added to
Tcl, the debugger stands ready to use it. Current-
ly, the b command parses and records the
information, followed by a message that it is un-
supported. Line numbers and filenames are also
a requirement for a screen-oriented version of
the debugger.

The problem of command name clashes between
applications and Tcl is long-standing. The de-
bugger deals with this problem by avoidance.
The debugger preemptively uses very short com-
mand names. (No action is taken to avoid
overriding application commands.) The debug-
ger also uses a very small number of command
names, overloading them within reason. In con-
trast, many traditional debuggers define
hundreds of commands. While this debugger
gains leverage from the existing Tcl commands,
this aspect of the design should be studied at
more length.

The debugger interface is designed so that multi-
ple debuggers can be used, one per Tcl_Interp.
The current implementation, however, does not
entirely support this. A handful of static vari-
ables are currently shared between all
debuggers. For instance, a single linked list of
breakpoints is maintained. Differentiating be-
tween different Tcl interpreters could potentially
be performed by the debugger, but it would be
much simpler and more efficient to rely on the
Tcl_Interp structure for storage.

An alternative debugger design would move de-
bugger control into a completely separate
interpreter. This would enable the ability to
write loops or sequences involving multiple de-

bugger commands such as “s;n” which cannot be
performed in the current implementation. It is
possible to achieve this same ability currently by
using an Expect script in a separate process but
the result is not as efficient as a single process
debugger.

While the debugger can be used with graphic ap-
plications (e.g., Tk applications), the debugger is
currently intended only to interact with the user
in a dumb terminal window. It should be possi-
ble to use Expectk [6] to write a GUI for the
debugger using only Tk and Expect commands.
Building a GUI-based debugger without using
Expectk or one of the Expect libraries may re-
quire significant rewriting to remove the
emphasis on line-oriented interaction.

In the Tk environment, access to the send com-
mand opens new possibilities for debugging.
Several browsers have already been written.
These browsers allow Tcl variables and proce-
dures to be examined and changed without
stopping the application. This style of debug-
ging could be combined with the debugger
described in this paper.

Conclusion
While the current implementation of Tcl lacks
debugger support in some areas, it provides
enough hooks to address the most difficult prob-
lems in building a debugger.

This paper has described a debugger for Tcl ap-
plications. The philosophy of its design is to be
as simple as possible by introducing only a few
new commands and concepts while using Tcl
and application commands as leverage. The re-
sult is a reasonably functional and highly-
integrated debugger for Tcl applications that is
small, fast, and easy to learn and use.

Nonetheless, the possibilities for much more so-
phisticated debuggers are obvious, and this work
can provide a starting point for future endeavors.

Availability

Since the design and implementation of this soft-
ware was paid for by the U.S. government, it is

in the public domain. However, the author and
NIST would appreciate credit if this software,
documentation, ideas, or portions of them are
used.

The debugger may beftp ’d as pub/expect/
tcl-debug.tar.Z 1 from ftp.cme.nist.
gov . The software will be mailed to you if you
send the mail message “send pub/expect/
tcl-debug.tar.Z ” (without quotes) to
library@cme.nist.gov .

Acknowledgments
Thanks to John Ousterhout, Sarah Wallace, Sus-
an Mulroney, Bob Bagwill, and Rob Savoye for
critiquing this work, and providing suggestions
that greatly enhanced the usability of the debug-
ger and readability of the paper.

The author gratefully acknowledges John Oust-
erhout for creating Tcl. Not only does Tcl solve
a significant problem in software design, but the
code itself as well as the documentation are
comprehensive and written with consummate
style. Tcl is truly a pleasure to use.

Portions of this work were funded by the NIST
Scientific and Technical Research Services as
part of the ARPA Persistent Object Base project,
and the Computer-aided Acquisition and Logis-
tic Support (CALS) program of the Office of the
Secretary of Defense.

Disclaimers
Trade names and company products are men-
tioned in the text in order to adequately specify
experimental procedures and equipment used.
In no case does such identification imply recom-
mendation or endorsement by the National
Institute of Standards and Technology, nor does
it imply that the products are necessarily the best
available for the purpose.

1. The “.Z” file is compressed. A “.z” version is
also available which is gzipped.

References
[1] Ousterhout, John, “Tcl: An Embeddable

Command Language”,Proceedings
of the Winter 1990 USENIX Confer-
ence, Washington, D.C., January 22-
26, 1990.

[2] Ousterhout, John, “Tcl(3) – Overview of
Tool Command Language Facilities”,
unpublished manual page, University
of California at Berkeley, January
1990.

[3] Libes, Don, “Expect: Curing Those Uncon-
trollable Fits of Interaction”,Pro-
ceedings of the Summer 1990
USENIX Conference, pp. 183-192,
Anaheim, CA, June 11-15, 1990.

[4] Libes, Don, “Expect: Scripts for Controlling
Interactive Programs”, Computing
Systems, pp. 99-126, Vol. 4, No. 2,
University of California Press Jour-
nals, CA, Spring 1991.

[5] Lehenbauer, Karl, “A Source Level Debug-
ger for Tcl”, Usenet Message-ID:
<1992Jan03.220658.22059@NeoSo-
ft.com>, January 3, 1992.

[6] Libes, Don, “Expectk”,unpublished manual
page, National Institute of Standards
and Technology, January 1993.

