
NeoSoft Whiteboard - A framework for Internet-based Collaboration

Karl Lehenbauer, NeoSoft, Inc.
Brad Morrison, Paranet, Inc.
Ellyn Mustard, NeoSoft, Inc.

Abstract

Frequent, informal communication increases the likelihood and
longevity of research collaborations. Close physical proximity makes
collaborations more likely to be initiated, and even more likely to be
sustained.

Considering the importance of physical proximity for successful
collaborations, it is a wonder that Internet-based collaborations are
even possible. Yet researchers are able to find each other,
communicate and collaborate to produce significant results with text-
based tools. We propose that the higher frequency of communication
associated with close physical proximity can also be enjoyed in a
networked environment, where closeness is measured by the available
bandwidth for communication.

In this paper, we will show how our observations of the Internet as a
groupware environment influenced the design of our own groupware
environment. Our inquiries led us to develop a generic groupware
framework based on Tcl and Tk, where Tcl programs are transmitted
as the fundamental message type of the system. Based on canvas
widgets, the framework integrates notions from active email,
hypertext, and existing networking extensions available for Tcl. The
Interact-4 client is described. Written to run on the groupware
framework, it provides an interactive, hypergraphic groupware tool
that incorporates many notions found in other groupware tools, while
adding interesting new features.

KEYWORDS
conducting research [1], we have managed to
successfully collaborate over the Internet
already, and this aspect of our work is growing
in ways that make the formation of new tools
essential to enable us to provide maximum value
for the time spent working with our
collaborators.

real-time groupware, toolkit, development tools,
hypertext

INTRODUCTION

Why build a groupware tool for developers?
Project size and scope are increasing, while our
collaboration methods are still tied to e-mail,
news, and long distance phone calls. Of course,
FTP is another way to share data. Finger lets
you see if your colleague is on-line; talk allows

Groupware is software that supports multi-user
interaction and collaboration. We set out to
build such a tool because we needed it. Despite
the importance of physical proximity when

limited real-time text exchanges; and you can
get an account on your colleague's machine and
log in remotely to be closer to their files and
environment. Sufficient bandwidth might even
allow you to remote-mount filesystems using
NFS.

to improve project coordination and provide the
framework for software design, producing
project notes that eventually form the basis for
project deliverable documentation.

Aside from the group organization, Internet
collaborations can be differentiated by project
type. A formal collaboration is one in which
the areas of responsibility and interaction are
well defined. In formal efforts one or more
organizations agree on what is to be built, who
is to build it, how long it should take, and any
other decisions that need to be made in support
of defining a manageable project and then
implementing it. Formal collaborations
typically include written agreements between the
parties involved assigning areas of
responsibility, defining milestones and project
plans.

Large numbers of successful collaborations have
used these tools and little more. They are based
on the least common denominator -- text.
Higher bandwidth technologies have received a
lot more study for groupware, yet text-based
tools remain the workhorses of practical
groupware on the Internet. Because they are so
successful, we think they warrant further
development and study.

Text remains, in fact, the most widely used
medium for communication of technical
information. [2] So we want to be sure to
support text effectively within our whiteboards.
The hypercanvas system is, in fact, a transport-
independent, interactive, multi-user, formatted
text and graphics user agent. Hypercanvasses
can be delivered over any existing text delivery
mechanism, including mail, news, FTP, and
interactively, via Internet Relay Chat (IRC) [3].

Informal collaborations, on the other hand, are
done on a volunteer basis by a self-selecting
group of interested individuals.
Characteristically, people may join informal
collaborations at any time, and they may leave at
any time, even abruptly, when other time
commitments or factors, such as a loss of net
access, occur. Thus these self-selecting groups
have a very amorphous nature. Examples of
informal efforts include the netnews software,
the 386BSD and Linux operating systems, and
the Xfree386 X-windows for PC efforts.

A hopeful thing for the usability of the tool, at
least for the target audience of developers, is
that we are the end-users of the application.
When developers use the things they build, those
things tend to get more attention in terms of
user interface, design, and maintenance. Likewise there are hybrid collaborations, for

example Tcl and Tk, where substantive, funded
work is performed by some people (e.g. John
Ousterhout), while others produce and
contribute extensions such as the XF interface
builder, expect, the photo, plot, hypertext and
tree widgets, Extended Tcl, and so forth.

INTERNET COLLABORATIONS-
GROUPS AND TYPES

Nunamaker et al describe three kinds of groups
of collaborators -- the entire group working
together in the same place, groups of people in
the same place working with other groups in
different places, and individuals working with
others in different locations. [4]

REQUIREMENTS FOR A
SUCCESSFUL INTERNET
GROUPWARE TOOL

The second aspect of remote collaboration is the
notion of whether the users are collaborating
interactively in real time, or not. [4]

The groupware tools need to support the lowest
common denominator environment – the
informal, geographically dispersed development
group.

The third constraint, we believe, is content –
what are the users doing? The whiteboard, while
designed to be a multipurpose tool, is initially
targeted to software developers, and is intended

• The software must be highly portable.

• The software should be inexpensive or free.

• The software must be evolvable by its users.
[5]

We decided we couldn't require audio or video
channels, although they are incredibly useful
and to be recommended. We wanted to find an
approach that would work both for people who
have interactive Internet access, and for those
who don't, because in our experience, there are
motivated people out there with useful skills and
only Email links. Successful informal
collaborations have been, and are being,
completed with the simplest low-bandwidth
network tools.

• The software should employ open
interfaces.

• The software must be able to exploit
emerging Internet groupware technologies,
such as audio, video and the World-Wide
Web.

PLANNING THE WHITEBOARD

The System Must Be EvolvableSome things we decided from reading the
current literature were that a pure What You See
Is What I See (WYSIWIS) system would be too
limited [6] -- we would make use of scrollbars to
access canvasses larger than a screen, and have
multiple canvasses.

This whiteboard system has to not just be
configurable within some programmer-
anticipated range of possibilities. Rather it
would be user- extendible, both through
customization and programming. Only then is
it broadly adaptable to different organizations'
approaches. Further, it permits experimentation
-- a good framework should be able to
accommodate broad notions of how groupware
should work and should facilitate efforts to test
new ideas.

Another notion from other groupware that we
were quite taken with was the see-every-action
approach taken by Roseman and Greenberg [7].
In their system, GroupKit, all of the users'
cursors were visible and could be seen as they
moved about. Because we wanted to support
people with fairly low bandwidth connections
(people sharing a SLIP link, for example), we
would make this capability selectable, as well as
providing a way to set a minimum movement
per update.

Using An Embedded
Programming Language

There's nothing like an embedded programming
language to enable end-user customization,
including by configuration and programming.
When a sufficiently powerful programming
language is available at runtime, uncommonly
powerful environments often result. Examples
noted by Ousterhout [9] include EMACS and
the UNIX shell.

Choosing Minimum Hardware
Requirements

A minimum set of hardware requirements must
be defined. To reach the absolutely broadest
possible audience, tools would have to be text
only. We felt, however, that a graphics system
using the Windows-Icons-Mouse- Pointer model
set a more realistic, although more elite, floor.

One of the most successful and widely available
embedded programming languages is Postscript.
Postscript gives laser printers and other display
and/or printing technologies unprecedented
flexibility in laying out pages. Postscript is
routinely used in ways not anticipated by its
developers. [10] Its ability to do so is its
fundamental strength.

X-windows was selected for the display
standard, since X is fairly widely available on
the Internet, plus that's what Tk currently
supports.

Our next consideration was the network
connection. What sort of bandwidth would one
need to have to use this tool? (Although
Greenberg et al found bandwidth to not be the
limiting factor in groupware performance [8],
they were delivering over a LAN, not the
Internet, where bandwidth can vary by three
orders of magnitude from one site to another.)

FUNCTIONAL DEFINITION

The Whiteboard is a multi-user tool that allows
communication within groups of software
developers who use the Internet as a groupware
environment. It encompasses client/server
technology and X-windows user interfaces to

build a project organization and design control
tool.

and Roseman, this is a "hybrid" system, because
there is replication and a server. [8]

To maximize extensibility and force the fewest
design decisions on all users and groupware
developers, basic groupware services are
provided on the client and server sides. Client
and server Tcl programs that implement the
actual groupware application are defined within
the whiteboards themselves, and are executed on
the client and server machines in the process of
selecting and using a whiteboard. These
programs make use of the basic groupware
services, which include basic Tcl execution,
communications between client and server, and
the ability to create and manipulate Tk toolkit
widgets. All decisions relating to user
identification, cursor updates and
differentiation, floor control, cutting and
pasting, display slaving, and the like, are left up
to the canvas-supplied client and server Tcl
programs.

Client-side startup

Basic client services start up when you start the
customized version of Extended Wish (wishx)
and it loads in the basic client service code.

When the client is started up, the home canvas
is automatically opened. The home canvas is
specified by the HOMECANVAS environment
variable or compiled-in default, and canvas ID's
include the server address, service number and
name of the canvas. (One possible home canvas
is hypercanvas.neosoft.com 2222 home.)

This is essentially a standard Tcl startup,
including loading the client side framework Tcl
code. The "open_socket" client-side socket
interface is used to handle the user's side of the
TCP connection. Next a connection is
established with the server, and the first
whiteboard (the home whiteboard) is selected.Basic services are provided on the client side by

Tcl [9], the Tk toolkit [11], and Extended Tcl
[12], in the form of an Extended Wish (wishx)
interpreter, supplemented by Lehenbauer and
Diekhans' open_socket code [13], Lehenbauer's
secure interpreter code [14], and Tcl code
written for the purpose. Tcl procedures to
perform groupware services are exported into
the secure interpreter by the service code.

The following things occur when a whiteboard
is selected:

• A secure interpreter is created in the client
with its own top-level window.

• The client notifies the server, which creates
its own secure interpreter and loads in the
Tcl code specified for the server-side of that
canvas.Basic services are provided on the server side by

an Extended Tcl (tcl) interpreter, supplemented
by Pekka Nikander's server-side TCP/IP Tcl
extensions [15], Lehenbauer's secure interpreter
code, along with Tcl support code. As above, Tcl
procedures to provide the basic services are
exported into the secure interpreter by the
service code.

• The server downloads the Tcl code making
up the client side of the canvas to the client,
who executes it in the secure interpreter.

From this point on, the client and server
programs take over, using the basic groupware
services for storage, user interface, and
communications services. All authentication,
permissions, notions of interface style, floor
control, etc., are handled by the Tcl programs
associated with the canvas, independently of the
basic groupware service code.

Note that even the basic services can be
extended by exporting new services into the
secure interpreters.

THEORY OF OPERATION
Server-side startup

The NeoSoft whiteboard system uses a central
server. The data for in-use canvasses is
replicated among all clients that have that
canvas open. By criteria defined by Greenberg

The server connects to its service number, and
begins accepting connections from clients.
When a client requests a connection, the server
accepts it. It then awaits a message identifying
the selected canvas.

When a canvas name is received, the server
creates a secure interpreter and sources in the
server side of the canvas, which does any startup
validation and the like, then transmits a
program to the client, which the client sources
into a secure interpreter to get its display and
user interface.

consistency and that we can set up the canvas
bindings in such a way that the cursors can
always been seen. This way, it's even possible to
draw on the control canvas, which could be
quite useful for providing documentation layers,
feedback during the evaluation phase, etc.

Latecomer Updates
Example of server functions include: When someone enters an active canvas, the state

of the canvas is downloaded from one of the
current participants, using the server.

• Authentication.

• Access lists and list management.

All actions, including cursor movements by all
participants, are seen on all displays that are on
the same canvas and showing the same part of
the canvas.

• Update displays to reflect arrivals and
departures.

• Bring new user's display up to date.

• Implement caching with the client side.
Methods Of Delivering Whiteboard
UpdatesDevelopers with Email

Connections Only You can deliver whiteboards as compound files
using regular Email, news and even
interactively using IRC.For developers that can only access the Internet

through Email connections, running the
whiteboard is still possible, but the user must
run the server and the client on his/her machine.

It's useful to deliver interactive whiteboard
changes over IRC because IRC already has a
multichannel realtime text distribution system in
place that has scaled to support a network of
interconnected servers and thousands of
interactive users. Since we're going to send
these commands as text, it is no problem to
transmit Tcl commands instead of user-typed in
text on specifically named channels. If we
decide not to deliver over it, it is still worthy of
study -- the IRC developers have solved some
interesting problems.

Canvas Control

We define the canvas control portion as the area
in the interface where you choose colors,
actions, etc.

Canvasses are manipulated using user interface
elements defined on the canvasses themselves,
and by elements defined on the control canvas.

 In our first few hypercanvas iterations, we had a
fixed set of controls for drawing, entering text,
etc., but found that to be cumbersome -- it didn't
allow for people in different roles to have unique
interfaces, which is desirable [16], and it made
the tool less useful as a framework for
developing groupware interfaces due to its hard-
coded nature.

Floor Control

Floor control is a system of deciding who speaks
next. While floor control is important for large
groups, it is not usually considered very
important for small ones [15]. Since the client
and server sides of a canvas are user-definable,
different notions of floor control can be
experimented with, implemented and deployed,
typically without requiring changes in the
system framework.

By separating the drawing interface from the
delivery mechanism and making it be an
arbitrary Tcl program, all of those problems are
eliminated, and individuals and organizations
are free to evolve the canvas system at either end
to better support their goals and methods. Attaching Files

There are all sorts of files, important to your
activity, already of a specific format that was not

There isn't necessarily a need to limit ourselves
to canvasses, though. The reason to do so is

defined by the groupware tool. Any
development effort is going to have those files,
and they are going to be a topic of conversation
within the whiteboard. So we need a way to
point to those files that is meaningful in terms of
user interaction, in other words, we want not
only the name of the file, but to be able to read
it, listen to it, view it, format it, compile it, etc.,
according to what it is. Again we are saved by
the client program, because it's user-defined.

All the active users of the canvas have their
cursor position displayed, and updated in real
time, on all other users' canvasses. Cursors are
arrows with the user name underneath.

Conversation Window

When you don't have a phone connection, a
conversation window is available where you can
type messages and have them scroll in a
window. Of course it's just another
hypercanvas.

GROUPWARE CLIENTS AND
SERVERS

Local Save

Any user can save a private copy of the drawing
canvas at any time.A number of groupware client/server programs

have been written for the groupware framework.
They range from simple game interfaces to a
working developer collaboration tool that
addresses many important groupware issues.

Server Save

Authorized users can save a public copy of the
drawing canvas at any time.

Interact-4 Groupware Tool Hyperlinks To Other Canvasses

Hyperlink buttons can be created on any canvas
that causes a jump to another canvas.

The Interact-4 groupware tool is the fourth in a
series of in-house attempts to create a groupware
tool that operates within our framework and
addresses many important groupware issues.

File Attachments

Files can be transmitted intact and "attached" to
a canvas. Displaying or processing of the file is
performed by outboard tools, such as xv,
ghostview, etc.

Greenberg et al showed the user's name along
with their cursor as it moved around. We
support this notion, and others, since cursor
management is totally user-configurable with Tk
event bindings and creating and manipulating
graphical elements within the canvas. Cursor
differentiation could also be done on the basis of
color, or a pixmap can be displayed, perhaps the
facesaver image of the participant or a
Monopoly piece, to name two.

Floor Control

Since this tool is targeted towards small groups,
thus far we have gone with an open floor policy
(no floor control) .

Cutting and Pasting

Cutting, copying and pasting are implemented
using Tk's excellent facilities for locating,
obtaining and modifying the definitions of
tagged canvas items. In this code, Tk's ability to
return the ID's of all of the tagged items within a
bounding box is put to good use to implement
cut and copy.

We also implemented the idea of gesturing.
Roseman et al had the ability to emphasize by
temporarily switching in a big cursor [7]. Other
possibilities would be to substitute a different
bitmap, change the color and flash the cursor,
and possibly also doing something with the
person's facesaver bitmap, such as flashing it.

Scaling
Drawing Tool

Once a piece has been copied from a canvas, it
can be scaled with facilities built into Tk's
canvas widget, before being pasted into a
different canvas.

Graphical objects in the control canvas can be
selected to choose colors, draw line segments,
arcs, rectangles, polygons and text in the display
canvas.

Display Slaving
Cursors Of Arrow And Name

Another useful concept from existing groupware
is view slaving [17], where view control is
granted to another user, or shared with them.
There the enslaved display is scrolled to the
same view on whichever canvas. We could have
a button that says "Jump to whatever Brad is
doing." Since we have multiple windows, one
canvas can be slaved while another is not.

Since the client side is Tcl code, bindings and
Tk user interface elements can cause anything to
happen -- an application to be launched, local
calculations to be performed, ad infinitum,
subject to security constraints imposed by what
services the client's trusted interpreter exports to
the secure interpreter.

Data that is created outside of the hypergraphic
system still needs to be accessible by that
system. For example, news articles, Email,
postscript and GIF files, and so forth, may need
to be referenced by, and be accessible from, the
hypergraphics system.

Update Tagging

Update tagging is where you want to see what
was done since some point in time. Each
display item is tagged with the integer time
(seconds since 1970) it was created. Items can
be selected over a range of time and their
attributes manipulated in some desired way to
show which ones they are.

We added an optional number-of-bytes-to-copy
parameter to copyfile, to facilitate in-line, in-
stream file transmission. We want to transfer
bitmaps for certain, ultimately the GIF and
postscript files as well.

User Identification

Determining who created what items is easily
done by tagging each item with its author.
There are times and places where anonymous
editing should be allowed, however. Examples
include brainstorming sessions, where it is
desirable that ideas be considered by themselves
without the weight of their author being
attached to them [4], and cases where the
content of the canvas may demand anonymity.

When transmitting over a text link, binary data
needs to be uuencoded, or equivalent. Examples
would include transmitting attachments over
IRC and mail.

CONCLUSION

Groupware makes it possible for people
separated by distance or time to effectively
collaborate on software development.

Most times you need to know who wrote what,
for example when working on a schedule for a
software project. On non-anonymous canvases,
our client and server tag each item with the
user@machinname ID of the author. Tk can
then be used to determine who an author is. We
could flash one person's widgets, or perform
some other attribute modification on them, as
with layering.

The NeoSoft Whiteboard System, while drawing
on existing groupware concepts, provides
several unique capabilities that make it
attractive as a framework for building
hypergraphic groupware systems.

AVAILABILITY
In normal use, we show the names and facesaver
images of the people in the canvas on the
control canvas. How this works is up to the
developer of the client and server programs.

The groupware code will be available by
conference time from ftp.neosoft.com in the
/pub/groupware directory.

Layers
ACKNOWLEDGMENTS

Many CAD systems support the notion of layers.
These are display elements grouped by some
criteria, that can be included or excluded
according to user selection. Tk's tag mechanism
is perfect for this task; the client code has all it
needs to provide support for separate layers.

Mark Roseman helped us with a lot of
background on groupware. Robert Cottingham
was invaluable for late-night formatting.
Thanks to Nick Handel for his part of the all-
night, marathon programming session that
launched these efforts. And thanks to Mark
Diekhans for critical reading, constructiveJumping Out to Other Applications

engagement, and for being our most prolific
remote collaborator.

[10] Adobe Systems, PostScript language
reference manual, ISBN 0-201-18127-4

REFERENCES
[11] John Ousterhout, Tk: An X11 Toolkit

Based on the Tcl Language, Proceedings
of the Winter 1991 USENIX Conference,
January, 1990

[1] R. Kraut and C. Egido, Patterns of Contact
and Communication in Scientific Research
Collaboration, 1988, Association for
Computing Machinery reprint, ACM 0-
89791-282-9 / 88 / 0001

[12] Karl Lehenbauer & Mark Diekhans,
Extended Tcl Extended command set for
Tcl, unpublished manual page, January,
1992.[2] P. Saffo, Hot New Medium: Text, Wired,

Vol. 1, No. 2, May/June 1993, Page 48.
[13] Karl Lehenbauer and Mark Diekhans,

open_socket: Tcl interface to TCP/IP
socket library, Usenet News, Message-ID:
<1992Feb11.143549.8314@NeoSoft.com>

[3] Michael Sandrof, Internet Relay Chat II,
FTP, from ftp.std.com,
/src/network/irc/ircII2.2.1.2

[14] Karl Lehenbauer, Re: Using Tcl for active
messages (source code included), Usenet
News, Message-ID:
<C5KszH.Csw@sugar.neosoft.com>

[4] J. F. Nunamaker, A. R. Dennis, J. S.
Valacich, D. R. Vogel and J. F. George,
Electronic Meeting Systems to Support
Group Work, Communications Of The
ACM, July 1991/Vol. 34, No. 7

[15] Pekka Nikander, A Simple TCP Connect
for TCL/TK (source included), Usenet
News, Message-ID:
<PNR.92Mar22213722@innopoli.ajk.tele.
fi>

[5] Jonathan Grudin, Why Groupware
Applications Fail: Problems in Design
and Evaluation, Office: Technology and
People, Vol. 4, No. 3 (1989), pages 245-
264.

[16] Stephen Viller, The Group Facilitator: A
CSCW Perspective, Proceedings of the
Second European Conference on
Computer-Supported Cooperative Work,
September 1991, pages 81-95.

[6] M. Stefik, D. G. Bobrow, G. Foster, S.
Lanning and D. Tatar, WYSIWIS Revised:
Early Experiences with Multi-user
Interfaces, ACM Transactions on Office
Information Systems, Vol. 5, No. 2, April
1987, Pages 147-167. [17] M. O. Pendergast, S. C. Hayne, Assisting

groups during the merging process,
Decision Sciences Conference, 1991.[7] M. Roseman and S. Greenberg, GroupKit -

A Groupware Toolkit for Building Real-
Time Conferencing Applications

[8] Saul Greenberg, Mark Roseman, Dave
Webster and Ralph Bohnet, Human and
Technical Factors of Distributed Group
Drawing Tools, Interacting With
Computers, Vol. 4, No. 3 (1992), pages
364-392.

 [9] John Ousterhout, Tcl: An Embeddable
Command Language, Proceedings of the
Winter 1990 USENIX Conference,
January, 1989

