
Embedding a Scheme Interpreter in the Tk Toolkit

Erick Gallesio

Universit�e de Nice - Sophia-Antipolis

Laboratoire I3S - CNRS URA 1376 - Bât 4.

250, avenue Albert Einstein

Sophia Antipolis

06560 Valbonne - FRANCE

Abstract

STk is a graphical package which rely on Tk and

the Scheme programming language. Concretely,

it can be seen as the Tk package where the Tcl

language as been replaced by a Scheme inter-

preter. Programming with STk can be done at

two distinct levels. First level is quite identical

than programming Tk with Tcl. Second level of

programming uses a full object oriented system.

Those two programming levels and current imple-

mentation are described here.

1 Introduction

Today's available graphical toolkits for applica-

tive languages are not satisfactory. Most of the

time, they ask to the user to be an X expert which

must cope with complicated arcane details such

as server connections or queue events. This is a

true problem, since people which use this kind

of languages are generally not inclined in system

programming and little of them get over the gap

between the language and the toolkit abstraction

levels.

Tk is a powerful X11 graphical toolkit de�ned

at the University of Berkeley by J.Ousterhout

[1]. This toolkit gives to the user high level wid-

gets such as buttons or menu and is easily pro-

grammable. In particular, a little knowledge of

X fundamentals are needed to build an applica-

tion with it. Tk package rely on an interpretative

language named Tcl [2]. However, dependencies

between those two packages are not too intricate

and replacing Tcl by an applicative language was

an exciting challenge. To keep intact the Tk/Tcl

pair spirit, a little applicative language was nec-

essary. Scheme [3] was a good candidate to re-

place Tcl, because it is small, clean and well de-

�ned since it is an IEEE standard [4].

Programming with STk can be done at two

distinct levels. First level is quite identical than

programming Tk with Tcl, excepting several mi-

nor syntactic di�erences. Second level of pro-

gramming uses a full object oriented system

(with multi-inheritance, generic functions and a

true meta object protocol). Those two levels of

programming are brie
y described in the two �rst

sections. Section 4 is devoted to implementation

and section 5 exposes some encountered problems

when mixing Tk and Scheme.

2 STk : First level

The �rst level of STk uses the standard Scheme

constructs. To work at this level, a user must

know a little set of rewriting rules from the orig-

inal Tk-Tcl library. With these rules, the Tk

manual pages and a little knowledge of Scheme,

he/she can easily build a STk program.

Creation of a new widget (button, label, can-

vas, ...) is done with special STk primitives pro-

cedures. For instance, creating a new button can

be done with

(button ".b")

Note that the name of the widget must be

\stringi�ed" due to the Scheme evaluation mech-

anism. The call of a widget creation primitive

de�nes a new Scheme object. This object, which

1



is considered as a new basic type by the Scheme

interpreter, is automatically stored in a variable

whose name is equal to the string passed to the

creation function. So, the preceding button cre-

ation would de�ne an object stored in the .b vari-

able. This object is a special kind of procedure

which is generally used, as in pure Tk, to cus-

tomize its associated widget. For instance, the

expression

(.b 'configure

'-text "Hello, world"

'-border 3)

permits to set the text and background options

of the .b button. As we can see on this exam-

ple, parameters must be well quoted in regard

of the Scheme evaluation rules. Since this nota-

tion is barely crude, the Common Lisp keyword

mechanism has been introduced in the Scheme

interpreter [5]

1

. Consequently, the preceding ex-

pression could have been written as

(.b 'configure

:text "Hello, world"

:border 3)

which in turn is both close from Common Lisp

and pure Tk. Of course, as in Tk, parameters can

be passed at widget creation time and our button

creation and initialization could have been done

in a single expression:

(button .b

:text "Hello, world"

:border 3)

The Tk binding mechanism, which serves to

create widget event handlers follow the same kind

of rules. The body of a Tk handler must be writ-

ten, of course, in Scheme. Following example

shows such a script; in this example, the label

indicates how many times mouse button 3 has

been depressed. Button press counter increment

is achieved with the simple script given in the

bind call.

(define count 0)

(pack 'append "."

(label ".l"

:textvariable 'count)

"fill")

(bind .l "<3>"

'(set! count (+ count 1)))

1

A keyword is a symbol beginning with a colon. It can

been seen as a symbolic constant (i.e. its value is itself)

To illustrate STk �rst level of programming,

Figure 1 shows the simple �le browser described

in [2] written in STk .

3 STk : Second level

Programmingwith material shown before is a lit-

tle bit tedious and more complicated than cod-

ing with Tcl since one have to add parenthesis

pairs and quote options values. Its only interest

is to bring the power and 
exibility of Tk to the

Scheme world.

The second level of STk is far more interest-

ing since it uses a full object oriented extension

of the Scheme language. De�ning an object ori-

ented layer on Scheme is a current activity in

the Scheme community and several packages are

available. The object layer of STk is derived

from a package called Tiny Clos [6]. This exten-

sion provides objects �a la CLOS (Common Lisp

Object System). In fact, the proposed extension

is much closer from the objects one can �nd in

Dylan, since this language is already a tentative

to merge CLOS notions in a Scheme like language

[7].

STk object extension gives to the user a full

object oriented system with multi-inheritance

and generic functions. Furthermore, all the im-

plementation rely on a true meta object protocol,

in the spirit of [8]. This model has been used to

embody all the prede�ned Tk widgets in a hier-

archy of Stk classes.

3.1 Class hierarchy

With the STk object system, every Tk graphical

object used in a program such as a menu, a la-

bel or a button is represented as an object in the

Scheme core. All the de�ned STk classes build a

hierarchy which is brie
y described here. Firstly,

all the classes shared a unique ancestor: the

<Tk-object> class. Instances of this class con-

tain informations which are necessary to estab-

lish a communication between the Scheme and

Tk worlds. Objects of this class have two main

slots named Id and parent. The Id slot con-

tains a string, normally generated by the system,

which correspond to a (unique) variable name in

2



#!/usr/local/bin/stk -f

(scrollbar ".scroll" :command ".list 'yview")

(listbox ".list" :yscroll ".scroll 'set" :relief 'raised :geometry "20x20")

(pack 'append "." .scroll "right filly" .list "left expand fill")

(define (browse dir file)

(if (not (string=? dir ".")) (set! file (string-append dir "/" file)))

(if (directory? file)

(system (format #f "browse.stk ~A &" file))

(if (file? file)

(let ((ed (getenv "EDITOR")))

(if ed

(system (string-append ed " " file "&"))

(system (string-append "xedit " file "&"))))

(error "Bad directory or file" file))))

(define dir (if (> argc 0) (car argv) "."))

(system (format #f "ls -a ~A > /tmp/browse" dir))

(with-input-from-file "/tmp/browse" (lambda()

(do ((f (read-line) (read-line)))

((eof-object? f))

(.list 'insert 'end f))))

(bind .list "<Control-c>" '(destroy "."))

(bind .list "<Double-Button-1>" '(browse dir (selection 'get)))

Figure 1: A simple �le browser

the Tk world. The parent slot contains a ref-

erence to the object which (graphically) includes

the current object. Normally, end users will not

have to use direct instances of the <Tk-object>

class

2

.

The next level in our class hierarchy de�nes

a fork with two branches: the <Tk-widget>

class and <Tk-canvas-item> class. Instances of

the former class are classical widgets such as

buttons or menus since instances of the later

are objects contained in a canvas such as lines

or rectangles. Tk widgets are also divided in

two categories: <Tk-simple-widgets> and <Tk-

composite-widgets>. Simple widgets are directly

implemented as Tk objects and composite ones

are built upon simple widgets (e.g. �le browser,

alert messages and so on). A partial view of the

2

All classes whose name begins with the \Tk-" pre�x

are not intended for the �nal user.

STk hierarchy is shown in Figure 2.

3.2 Basic notions

This section describes basic concepts of our ob-

ject extension on a small example. De�nition of

a new object class is done with the defclass form.

For instance,

(defclass person ()

((name :initarg :name

:accessor name

(age :initarg :age))))

de�nes a person characteristics. Two slots are

declared: name and age. Characteristics of a slot

are expressed with its de�nition. Here, for in-

stance, it is said that the slot name can be inited

with the keyword :name upon instance creation

and that an accessor function should be gener-

ated for it. Creation of a new instance is done

with the make constructor:

3



Tk-object

Tk-canvas-item

Frame Label

Check-button Radio-button

Tk-complex-button

Tk-simple-widget

Tk-widget

Button

Message Rectangle Line

Figure 2: A partial view of STk hierarchy

(define p (make person

:name "Smith"

:age 42))

This call permits to build a new person and to

initialize the slots which compose him/her.

Reading the value of a slot can be done with

the function slot-value. For instance,

(slot-value p 'age)

permits to get the value of slot age of the p ob-

ject. Setting this slot can be done by using the

generalized set! de�ned in STk :

(set! (slot-value p 'age) 43)

Since an accessor as also been de�ned on the name

slot, it can be read with the following expression:

(name p)

As before, slot setting can be done with the

generalized set! as in

(set! (name p) 43)

3.3 Tk classes

Now that basic concepts have been exposed, let

come back to how using Tk with the object layer.

In our model, each Tk option is de�ned as a slot.

For instance, a simpli�ed de�nition of a Tk but-

ton could be:

(defclass <Button> (<Label>)

((command :accessor command

:initarg :command

:allocation :pseudo

:type 'any))

:metaclass <Tk>)

This de�nition says that a <Button> is a (in-

herits from) <Label> with an extra slot called

command. This slot's allocation scheme is said to

be :pseudo

3

. Pseudo-slots are special purpose

slots: they can be used as normal slots but they

are not allocated in the Scheme world (i.e. their

value is stored in one of the structures manipu-

lated by the Tk library instead of in a Scheme ob-

ject). Of course, accessors will take into account

this fact and functions for reading or writing such

slots are unchanged. For example,

(set! (command b) '(display "OK"))

permits to set the script associated to the b but-

ton.

Preceding defclass states that the command

slot can contain a value of any type. Type of a

slot permits to the system to apply the adequate

coercion function when a slot is read. Since Tk

3

Pseudo-slots are de�ned in the metaclass <Tk>,

hence the :metaclass option in de�nition.

4



always computes results as strings, this conver-

sion can be done automatically when we know

the type of the slot (e.g. a border width is always

stored as an integer in Tk structures). No con-

version is done when a slot is written; this work

is done by Tk since it will reject bad values.

Note that using the object extension of STk

permits the user to forget some Tk idiosyncrasies.

In particular, it permits to avoid the knowledge

of pure Tk naming conventions. The only thing

the user has to know when creating a new object

is it's parent. An example of widgets creation is

shown below:

(define f (make <Frame>))

(define b1 (make <Button>

:text "B1"

:parent f))

(define b2 (make <Button>

:text "B2"

:parent f))

Created buttons here specify that their parent

is the frame f. Since this frame does not specify

a particular parent, it is supposed to be a direct

descendant of the root window ".". This parent's

notion is also used for canvas items: a canvas

item is considered as a son of the canvas which

contains it. For instance,

(define c (make <Canvas>))

(define r (make <Rectangle>

:parent c

:coords '(0 0 50 50)))

de�nes a rectangle called r in the c canvas. User

can now forget that r is included in c since this

information is embedded in the Scheme object.

To move this rectangle, one can use for example

the following expression:

(move r 10 10)

which is more natural than the things we have to

do at STk �rst level.

3.4 Generic functions

With the STk object layer, execution of a

method doesn't use the classical message sending

mechanism as in numerous object languages but

generic functions. The mechanism implemented

in STk is a subset of the generic functions of

CLOS. As in CLOS, a generic function can have

several methods associated with it. These meth-

ods describe the generic function behaviour ac-

cording to the type of its parameters. A method

for a generic function is de�ned with the de�ne-

method form.

Following example shows three methods of the

generic function value-of:

(define-method value-of ((obj <Scale>))

(string->number ((Id obj) 'get)))

(define-method value-of ((obj <Entry>))

((Id obj) 'get))

(define-method value-of (obj)

(error "Bad call: " obj))

When calling the value-of generic function, sys-

tem will choose the more adequate method, ac-

cording to its parameter type: if parameter is a

scale or an entry, �rst or second method is called;

otherwise the third method is called since it does-

n't discriminates in favour of a particular param-

eter type.

Setter method are a special kind of methods

which are used with the generalized set!. Here

are the corresponding setter methods to previous

value-of:

(define-method (setter value-of)

((obj <Scale>) value)

((Id obj) 'set value))

(define-method (setter value-of)

((obj <Entry>) value)

((Id obj) 'delete 0 'end)

((Id obj) 'insert 0 value))

(define-method (setter value-of) (obj)

(error "Bad call: " obj))

One of these methods will be called when evalu-

ating following form, depending of type of x:

(set! (value-of x) 100)

As we can see here, generic functions yield things

more homogeneous than what we can have at

STk �rst level. Indeed getting and setting the

value of an entry or a scale can now be done in a

similar fashion with those methods.

5



4 Implementation - Perfor-

mances

The STk interpreter is written in C and for some

parts in Scheme. The object oriented layer pre-

sented in section 3 is totally written in Scheme.

The Scheme interpreter is as far as possible con-

form with R4RS [9]. It is important to note that

the Tk library is used unmodi�ed in this inter-

preter. All the Tcl functions call issued by Tk

primitives are simulated by STk . This permits

to the STk interpreter to be, as far as possible,

independent of the Tk code. In particular, em-

bedding a new release of Tk will only require to

link the new library to the actual STk inter-

preter. Furthermore, external contributions we

can �nd on net can be easily included in the in-

terpreter, since Tcl \intrinsics" replacements are

present in the STk core.

Actual implementation doesn't put accent on

performances. It must be seen as a prototype

which must be stretched further. However, mea-

suring the performances of the STk package is

a di�cult task and has not been really done yet.

What we can say for now is that there is a little

overhead when calling a Tk primitive written in

C since the STk package must translate all the

parameters in C strings. This translation must

be done because the Tk library \thinks" that it

works on Tcl which uses strings for passing pa-

rameters. In counterpart, procedure written in

Scheme are far more e�cient than Tcl scripts

since the Scheme interpreter uses an appropriate

format which is cheaper than strings. In par-

ticular, there is no data conversion when other

Scheme procedures are called. Using the object

extension of STk gives this tool more power but

is, as we can expect, more time consuming. For

now, penalty when using the STk object oriented

layer is mainly due to object creation: creating

a widget with a make is nearly 20 times slower

than basic creation achieved by using only �rst

level primitives. However, getting or reading a

Tk option using a slot access is only 1.5 times

slower than direct Tk con�guration. We can ex-

pect that rewriting some parts of the STk object

layer in C will decrease those ratios. Comparing

the Tcl and Scheme approaches needs much more

working; and a complete study will be done when

the package will be more stable.

5 Open problems

Using Scheme with Tk causes some di�culties

which cannot satisfactorily be resolved. Some

problems are due to the very nature of Scheme,

others are due to Tk. Following, is a list of major

of them

� R4RS requires that symbol must be case in-

sensitive. Tk imposes, in a certain extent, to

the underlying interpretative language to be

case sensitive since command in event han-

dler scripts take into account the case of the

letter following the % symbol.

� Another problem arises with lists and

strings: Tcl doesn't distinguish those two

types. In particular, one can set an option as

a string and asking to Tk this option value

will yield a list. This is not a problem in Tcl

since a list is only another vision of a string.

Unfortunately, there is no such direct equiv-

alence in Scheme. Improvement of this point

would probably require a modi�cation of the

Tk library.

� One of the major assets of the Tk library is

the send command. With this command, a

Tk application can ask to another running

Tk interpreter to evaluate an expression.

Since Tk library is not modi�ed, STk in-

terpreters cannot be distinguished from Tcl

ones. Most of the time, this is confusing and

error prone because requests to an applica-

tion must take into account the language its

underlying interpreter understands. Keep-

ing the communication possibility between

STk an Tcl applications seems to be suit-

able, but it would be �ne to establish a stan-

dard way to determine what kind of inter-

preter is running in a particular application.

References

[1] J. Ousterhout. An X11 toolkit based on the

Tcl Language. In USENIX Winter Confer-

ence, pages 105{115, January 1991.

6



[2] J. Ousterhout. Tcl: an embeddable command

language. In USENIX Winter Conference,

pages 183{192, January 1990.

[3] G. J. Sussman H. Abelson and J. Suss-

man. Structure and Interpretation of Com-

puter Programs. McGraw-Hill (New York),

1985.

[4] IEEE Standard 1178-1990. IEEE Standard

for the Scheme Programming Language. In-

stitute of Electrical and Electronical Engi-

neers, Inc. (New York), 1991.

[5] G. L. Steele Jr. Common Lisp: the Language,

2nd Edition. Digital Press (Bedford, MA),

1990.

[6] G. Kickzales. Tiny-clos. unpublished work.

Source available on arisia.xerox.com in direc-

tory /pub/mops, December 1992.

[7] Apple. Dylan: an object oriented dynamic

language. Apple Computer, 1992.

[8] D. G. Brobow G. Kickzales, J de Rivi�eres.

The Art of Meta Object Protocol. MIT Press,

1991.

[9] W. Clinger and J. Rees (editors). Revised

4

Report on the Algorithmic Language Scheme.

ACM Lisp Pointers, 4(3), 1991.

7


