
Writing Object-oriented Tcl-based Systems using Objectify

Wayne A. Christopher

�

University of California, Berkeley

Abstract

This paper describes Objectify, a tool that facilitates

the integration of C++ classes into Tcl-based sys-

tems. It uses an object model similar to that of Tk,

and makes it possible for the programmer to anno-

tate his classes with information about which mem-

ber functions should be exported as Tcl \methods",

and which data members should be accessible from

Tcl via \con�gure" commands. Objectify automati-

cally generates glue code to interface between Tcl and

C++, and also creates documentation �les. This ap-

proach is fairly light-weight and straightforward, and

automates the tedious and error-prone task of main-

taining Tcl command interfaces to lower-level object

implementations.

1 Introduction

Tcl provides a very
exible and simple interface be-

tween code written in Tcl and C or C++ code.

One can create commands in an interpreter using

Tcl CreateCommand, and provide for the command

to be called with an arbitrary piece of \client data"

as one of its arguments. No restrictions are imposed

on when new commands can be created or what the

client data can consist of.

In many cases, however, one wants to impose some

structure on this scheme in order to support more

disciplined styles of programming. An example is

\object-oriented Tcl", which is described in Chapter 3

of the as yet unpublished Tk/Tcl book [1]. The major

existing instance of this style is the Tk toolkit { widget

objects are created using a creation command, such

as entry .ent -bg green, methods can be called on

them, for example .ent get, their instance variables

can be examined and changed using the configure

method, and they can be deleted using the destroy

command. An object is made available to the Tcl

level by registering its name with the interpreter as

a command, using the address of the data structure

that stores information about the widget as the client

data argument.

�

ComputerScienceDivision, University of California, Berke-

ley, CA 94720. Email: faustus@cs.berkeley.edu. Part of

this work was done at Paci�c Marketing and Communication,

Berkeley CA.

The system described in this paper, called Objec-

tify, provides a simple and convenient way to de�ne

objects in the style of Tk widgets, with slots and

methods. For each Tcl object there is one C++

object, and methods and slots are implemented via

member functions and instance variables. The major

requirements that Objectify imposes on the program-

mer are that he be free to modify the relevant class

declarations, and that he not mind using a few un-

sightly macros in these declarations.

The Objectify program does two things. First,

it reads the declarations for classes that are to be

made into Tcl object types and automatically gener-

ates most of the \glue" code to interface between the

Tcl and the C++ worlds. Second, it uses the informa-

tion contained in these classes, which includes usage

annotations, to generate a human-readable summary

that documents the class and its methods and slots.

It tries to facilitate what Knuth calls \literate pro-

gramming" [2], by making it easier to maintain code

and documentation in parallel and to keep them syn-

chronized.

Recently there have been a number of suggestions

for making the integration of Tcl with lower-level ob-

ject systems easier. The tclOBST system [3] merges

Tcl with a persistent schema-based object system.

In [4], a technique is described for automatically

linking C data structures with Tcl variables, which

provides �ne-grained access capabilities. Other re-

searchers have developed or designed systems that

more directly address the problems that Objectify

deals with, but to my knowledge none of these have

been published or released yet.

2 Using the system

Objectify, which is a Tcl program, operates on a �le

by �le basis. It takes one header �le, for example,

test.h, and produces C++ and documentation �les

called test objects.cc and test objects.doc, re-

spectively. The header �le contains one or more spe-

cially annotated class declarations. An example is

shown in Figure 1.

The class declaration contains a number of lines

that begin with TCL . The meanings of these lines are

as follows.

class TCL OBJECT("thingie", Thingie, object, "This command creates a new thingie.") f

public:

Thingie(Tcl Interp* interp);

~Thingie();

TCL SLOT(BOOLEAN, int, useful flag, "-useful", "useful", "Useful",

"1", 0, NULL, "<boolean>", "This flag determines whether the thingie is useful.");

TCL METHOD("apply", ApplyCmd, 0, 2, "[times] [intensity]",

"Apply the thingie the specified number of times with the specified intensity.");

TCL METHOD("configure", ConfigureCmd, 0, -1, "options", "Configure the thingie.");

TCL METHOD("delete", DeleteCmd, 0, 0, "", "Delete the thingie.");

int AfterConfigure(Tcl Interp* interp); // Required member function.

g;

Figure 1: An example of a Tcl C++ class de�nition.

� TCL OBJECT: This de�nes the name of the class

and the Tcl command that can be used to cre-

ate instances of the class. The type may be ei-

ther \object" or \widget". In the latter case, the

system will generate some extra code to create

windows and do Tk-related bookkeeping. A doc-

umentation string for the class is also included

here.

� TCL SLOT: This speci�es a slot, or data mem-

ber, within the object, which can be accessed via

the configure method. The arguments describe

both the C++ type and name, and the name by

which it can be accessed from Tcl. (In general,

this name will begin with a \-".) There is also a

form, TCL SLOT1, that omits the options database

information, which can be used when the type is

\object" rather than \widget". Documentation

strings can be given that describe the type of the

slot and what it is used for.

� TCL METHOD: This speci�es the Tcl name and the

C++ name of the member function, along with

information on the number of arguments allowed.

The actual member declaration is always of the

form

int MethodCmd(Tcl Interp* interp,

int argc, char** argv);

The argument number constraints apply to the

value of argc, and a maximum value of -1 in-

dicates no upper limit on the number of argu-

ments. Documentation strings must be given

that describe the arguments and the purpose of

the method.

When the header �le is compiled as C++ code,

these lines are macro-substituted so as to provide the

appropriate declarations. The macro de�nitions are

contained in the �le objectify.h, which must be

included in this header �le. Since these de�nitions

expand in a fairly straightforward way, one can eas-

ily de�ne derived classes, virtual methods, and inline

method de�nitions. The Objectify program only looks

at what is in the argument lists of the TCL entries.

The argc and argv that are passed to the func-

tions implementing the method are adjusted so that

argv[0] points to the �rst argument after the method

name. No attempt at parsing the values of the argu-

ments and calling the function with C++ types rather

than strings was made, in the interests of keeping the

interface as simple as possible.

When an object is created, its name is either spec-

i�ed in the command, if it is a widget, or is auto-

matically generated, if it is a regular object. In ei-

ther case it is returned as the result of the creation

command. The automatically generated names are

of the form name address, where name is the Tcl ob-

ject name and address is the hex address of the object.

While the use of absolute addresses for object handles

is frowned upon in the Tcl community, I feel that the

use of the object name in the handle allows adequate

error checking. The problem of dangling references

remains, however, and the use of lookup-table based

handles would be a useful enhancement to Objectify.

If the object type is \object", then a constructor

must be provided that takes a Tcl Interp * as an

argument. If it is \widget", then one must be pro-

vided that takes a Tcl Interp * and a Tk Window.

It will be called after the window is created, and will

probably want to store this data somewhere. There

is no way for the constructor to indicate failure to

the creation routine, but this can be done in the

AfterConfigure routine, described below.

Alternate

forms of the TCL entries exist, TCL METHOD PARENT,

TCL SLOT PARENT, and TCL SLOT1 PARENT, which do

not macro-expand into member de�nitions and can

be used when the members are inherited from a par-

ent class.

A few special methods can be declared, whose im-

plementations are automatically created by Objectify.

If they are omitted, no code will be generated for

them.

� configure: This method works like the Tk con-

�gure operation. If it isn't declared, the slots

can be initialized in the creation command but

not examined or modi�ed from Tcl.

� delete: This method removes the object com-

mand from the interpreter and applies the C++

delete operator to the object. This approach

is a bit di�erent from the Tk mechanism, which

uses a single destroy command to delete all wid-

get types. The use of a deletion method is cleaner

from an implementation standpoint, and I feel it

is more in keeping with the object-oriented phi-

losophy.

� help: This method returns the documentation

strings provided in the class declaration to the

user. Without arguments, it returns the class

documentation and a list of the methods and

slots, and when given a method or slot name as

an argument, returns the relevant documentation

string. A full description can be obtained using

\help all".

Finally, a member function

int AfterConfigure(Tcl Interp* interp);

must be provided. This function will be called after

each con�gure or creation operation, and should re-

turn TCL OK or TCL ERROR to indicate whether there

is a problem with the con�guration.

3 Discussion

Some other recent approaches suggested for integrat-

ing Tcl and C++ are more heavy-weight than Objec-

tify, in that they try to provide access to an entire

C++ class hierarchy from within Tcl and support au-

tomatic argument parsing, or try to handle classes

that cannot be modi�ed. I felt that either of these

approaches would have been signi�cantly more work

than Objectify, and in some cases would have required

complete parsing of the classes. When new code is

being developed and the programmer has the luxury

of de�ning his classes any way he wants, I feel that

the approach described here strikes a good balance

between complexity and power.

In addition to simplifying the implementation, us-

ing macros to convey information to Objectify makes

it possible to support automatic document generation.

Documentation is an area of software development

that is often given scant and belated attention, in re-

search environments at least, and its maintenance is

problematic because the code and the text describing

it generally are very loosely coupled. By integrat-

ing the code and its documentation the way that Ob-

jectify does, this stumbling block is removed. Good

class documentation is especially important for Tcl {

since it is an attractive choice for a user-level scripting

language for many applications, barriers between the

programmer and the user can be relaxed somewhat,

and if a user is going to write Tcl code to manipulate

objects implemented in C++, he must have up-to-

date documentation on them.

4 Future work

There are many things that could be done to further

ease the integration of C++ objects and Tcl applica-

tions. Code could automatically be generated to parse

method arguments, possibly using the same sort of

mechanism that is used for con�guration options. Re-

sults could also be automatically formated. The ob-

ject commands should also allow abbreviations, and

some attempt should be made to speed up method

dispatch when there are many methods { the use of

perfect hashing (e.g., the gperf program) has been

suggested for this.

The Objectify program is currently written in Tcl,

and it is fairly slow, especially for parsing the header

�les and extracting TCL lines. It should either be

written in C, or use an AWK or PERL script for the

parsing task.

An interesting extension to Objectify would be to

re
ect the class hierarchy of a C++ program in the

semantics of Tcl objects. Methods and slots could be

inherited in a fairly natural way. Currently, Objec-

tify is oblivious to inheritance, but I plan to try and

include some support for this in the future.

The Objectify program is available via anonymous

ftp from the Tcl archives, in pub/tcl/code on the

machine harbor.ecn.purdue.edu (128.46.128.76). It

is freely modi�able and redistributable.

References

[1] John Ousterhout. Tcl and the Tk Toolkit.

Addison-Wesley, 1993 (expected).

[2] Donald E. Knuth. Literate programming. Com-

puter, 27:97{111, 1984.

[3] The Stone Group. \tclOBST released". Usenet

article 1s81fg$d0a@gate.fzi.de, comp.lang.tcl,

May 1993.

[4] Duane Murphy. \Re: Handling C structures".

Usenet article

1993May18.171534.27362@novell.com,

comp.lang.tcl, May 1993.

